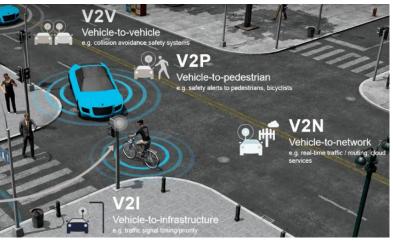


Pillar 2: NEXTIUM, i2CAT, ATOS, Ubiwhere, UCY Multi-Radio V2X Communications Interoperability, Attack Detection and Mitigation

Jordi Casademont (i2CAT) Barcelona, November 16th 2021


- □ 1- Introduction to Connected Vehicle
- □ 2- CARAMEL Architecture
- □ 3- Use Cases
- □ 4- Conclusions

1- Connected Vehicle: Scenario

□ Vehicle to Everything (V2X) communications

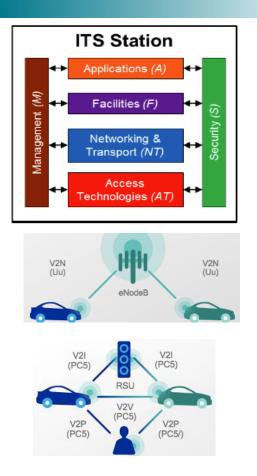
- □ Cooperative Intelligent Transport Systems (C-ITS)
 - Collision warning
 - Platooning
 - Lane-merging assistance

Source: Qualcomm

- □ System components
 - Hardware:

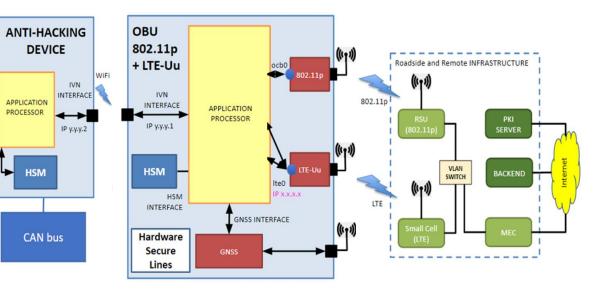
On-Board Unit (OBU) Ro

Road Side Unit (RSU)

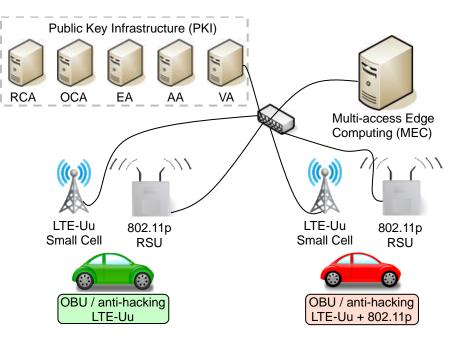

 Π

- Radio technology & Communication protocols
- Security system: Public Key Infrastructure

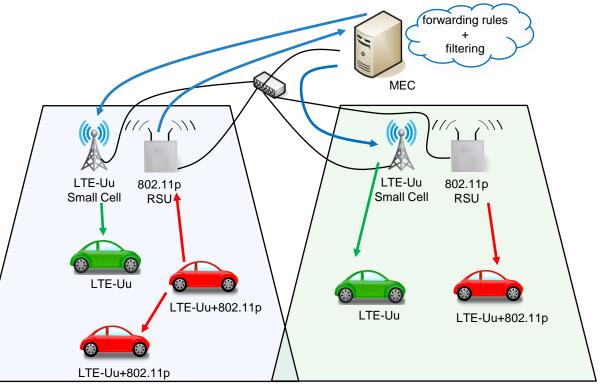
1- Connected Vehicle: V2X Communications


- New communication protocol architecture
- Networking and Transport
 - Europe: GeoNetworking
 - US: WAVE
- Radio Technologies
 - Cellular channel (LTE-Uu) already available
 - Used to connect with PKI servers
 - IEEE: 802.11p (DSRC) 2010
 - Very simple, based on CSMA/CA
 - 3GPP: LTE-V2X (C-V2X) 2017
 - Larger coverage and slightly better capacity
 - All systems need to interoperate

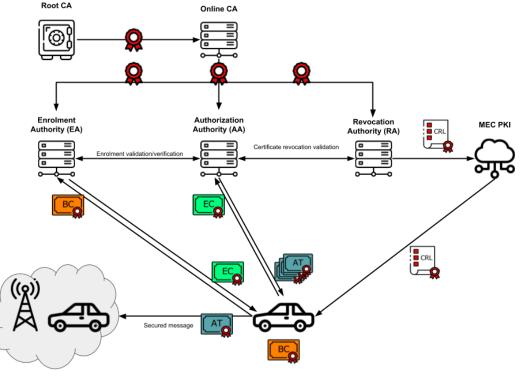
□ Vehicle cooperative unit


- On Board Unit (OBU)
 - V2X module (802.11p)
 - LTE module (LTE-Uu)
 - Security module (HSM)
- Anti-hacking device
 - Additional security functions

2- Architecture: Fixed Infrastructure

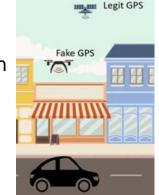


- □ Radiating road side units:
 - 802.11p RSU
 - LTE network (small cells)
- Public Key Infrastructure (PKI)
- Multi-access Edge Computing (MEC)
 - ETSI MEC framework standardization
 - Dashboard module / orchestrator / server
 - MEC functions:
 - Virtualization of V2X comm. stack
 - Radio technologies interoperability
 - Distribution of revoked certificates


- C-ITS Messages forwarding for multi-radio interoperability
 - Forwarding and filtering rules according to:
 - Region of interest
 - Age of the message
 - Validity of the signature of the message
 - Type of vehicle
 - Type of message

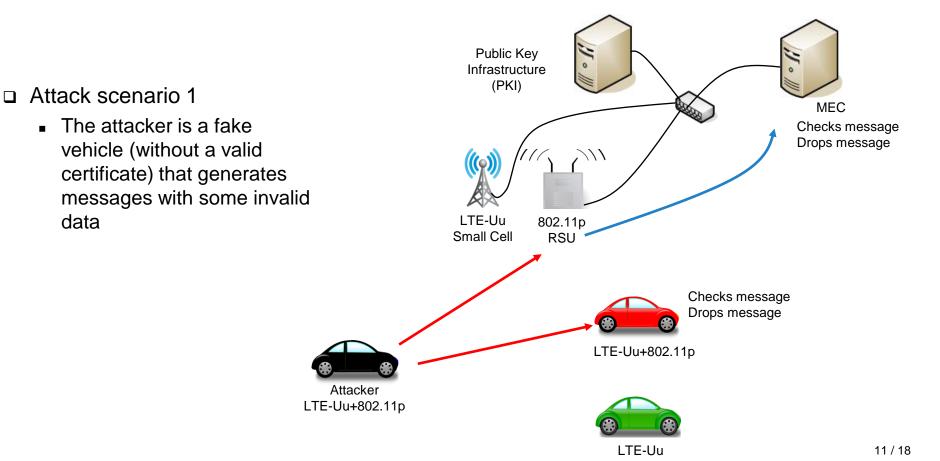
2- Architecture: Secure V2X communications - PKI

- PKI servers provide multiple certificates to the vehicles allowing a secured V2X message transmission:
 - Confidentiality
 - Integrity
 - Availability
 - Non-repudiation
 - Anonymity

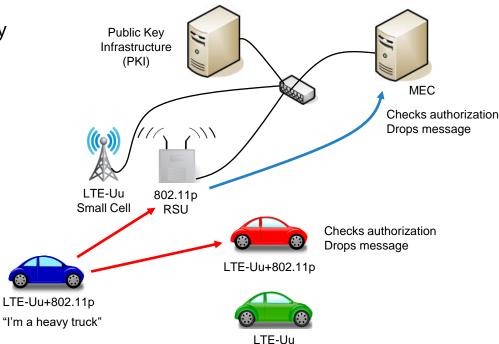

3- Use Cases: Open problems for a secure C-ITS architecture

- Privacy reinforcement trying to avoid vehicle tracking
 - Compute the best instant to change AT and vehicle's addresses (MAC and GeoNetworking)
 - Machine learning techniques
- Attack detection
 - GPS spoofing attack: OBU broadcasts a false position
 - V2X message transmission attack
 - Tamper attack in the OBU: Hardware Security Module (HSM)
- □ Countermeasures:
 - If one car is under attack \rightarrow Decide if it is prohibited from transmitting messages
 - PKI revokes certificates
 - Distribution of Certificate Revocation Lists (CRL)

3- Use Case 1: GPS Spoofing attack


- □ GPS spoofing:
 - Receiver is attacked by injecting via broadcasting, incorrect GPS signals
 - Spoofed signals mislead the estimation process, predicting an erroneous position
- GPS spoofing attack detection:
 - Option 1: Executed locally in the vehicle: Self-localization integrity check
 - Uses other means to check the current position: cellular networks, accelerometers, steering angle, ...
 - Option 2: Executed externally in the MEC: collaborative position estimation
 - Vehicular network with vehicles in the road moving constantly and transmitting:
 - Absolute position, relative distance and angle of arrival measurements using LIDAR/RADAR
 - Multi modal optimization function can estimate the position of all the vehicles, taking those that have passed the integrity check as reference points

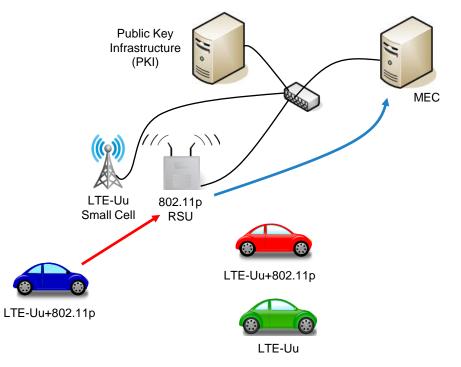
3- Use Case 2: V2X message transmission attack (I)



Attack scenario 2 Public Key Infrastructure The attacker is a fake vehicle (PKI) which sniffs and replays messages of compliant vehicles MEC Replay detection Replay detection 11/ Drops message LTE-Uu 802.11p Small Cell RSU Replay detection Drops message LTE-Uu+802.11p Attacker LTE-Uu+802.11p LTE-Uu

□ Attack scenario 3

- The attacker is a compliant vehicle but supplanting identity
- Check Authorization versus type of ITS station

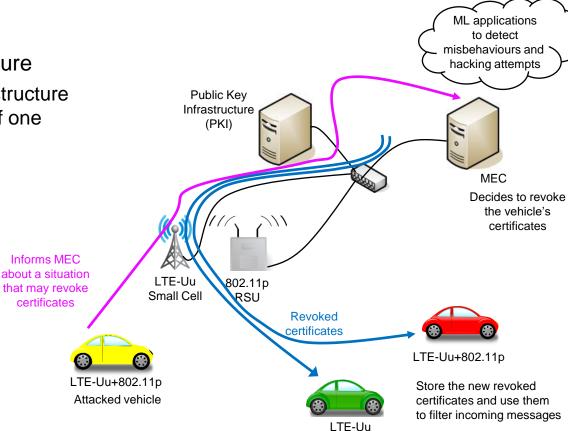


GeoNetworking Address ETSI EN 302 636-4-1 ITS-S type. To identify the ITS-S type. 0 - Unknown 1 - Pedestrian 2 - Cyclist 3 - Moped 4 - Motorcycle 5 - Passenger Car 6 - Bus 7 - Light Truck 8 - Heavy Truck 9 - Trailer 10 - Special Vehicle 11 - Tram 15 - Road Side Unit

• OBU tamper attack:

- OBU is manipulated in order to get access to secure information
- OBU countermeasures
 - Against environmental attacks (temperature, voltage and clock fault injection)
 - Against HW physical attacks
 - Against SW attacks

3- Use Cases: Certificate Revocation



Detection in the infrastructure

One element of the infrastructure revokes the certificates of one vehicle

Detection in the vehicle

- Anti-hacking device
- OBU's HSM
- GPS spoofing
- V2X message

Collaborative Intelligent Transport Systems

- Great perspectives of new services and applications based on vehicles positions
- Currently developing new radio technologies that will require interoperability
- Some services and applications are based on V2X communications, but others require fixed infrastructure network and computation capabilities

□ Proposal of an architecture based on <u>MEC</u> and <u>Anti-Hacking Device</u> which provides:

- Radio technology interoperability
- ETSI compliant security: PKI infrastructure
- Security improvements:
 - Tamper proof OBU with HSM
 - GPS spoofing attack detection
 - Certificate Revocation List distribution

QUESTIONS ???

For further information, please contact:

Natàlia Porras Mateu natalia.porras@nextium.com

THANK YOU FOR ATTENDING!!

