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Executive Summary 

This deliverable will report in detail on the use cases to be deployed within the project. It will identify 
main limitations of current technologies and specify actors, scenarios, the flow of actions and 
measurable improvements over the current state-of-the-art. 

D2.1 consists of five sections, section 1 introduces the CARAMEL stakeholders and provides some 
useful definitions useful to understand better the activities of the project. That includes the role of 
Machine Learning (ML) and Artificial Intelligence (AI) in the context of the project as well as an overview 
of the CARAMEL anti-hacking solution. Section 2 focuses on the first pillar of the project, autonomous 
driving. After introducing the context of autonomous driving, this section focuses on some selected 
scenarios for the project. Section 2 provides details about data collection and selection methodology, 
the use of ML and AI and the role of anti-hacking solution in the framework of selected scenarios. At 
the end, section 2 presents some related functional requirements related to pillar 1. In the same way, 
section 3 provides details about the second pillar of the project, connect cars. Scenario description, 
enabling infrastructure, data collection and selection methodology, use of ML and AI in the context of 
selected scenarios, and the use of anti0hacking solution are the topics presented in section 3. This 
section also provides some technical requirements related to the connected car pillar. Section 4 follows 
the same path for the electromobility case, pillar 3. Scenario description, enabling infrastructure, data 
collection and selection methodology, the role of ML and AI in the context of selected scenarios as well 
as the role of anti-hacking solution are presented under section 4. Similar to the two previous sections, 
section 4 ends with some functional requirements related to the electromobility. Section 5 concludes 
the document and provides some extra interesting cybersecurity related scenarios.       
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1 Introduction 

Vehicles are becoming smarter and “greener” through connectivity and artificial intelligence, and 
cybersecurity is emerging as a new concern. CARAMEL’s goal is to proactively address modern vehicle 
cybersecurity challenges applying advanced Artificial Intelligence (AI) and Machine Learning (ML) 
techniques, and also to continuously seek methods to mitigate associated safety risks.  

D2.1 will define in detail the selected use cases that are going to be validated by CARAMEL. D2.1 will 
review the already published state of the art, analyse their limitations, and at the end propose the 
CARAMEL solution to fill the identified gaps. This deliverable will also collect the use case requirements 
in terms of CARAMEL showcases. As such, we will formulate this input as functional requirements to 
drive the definition and design of the CARAMEL architecture. T2.1 will also provide the basis for the 
definition of an evaluation matrix. 

 

Figure 1: CARAMEL Project Structure 

D2.1 has been organized around three main pillars of the future mobility:  

• Pillar 1 – Autonomous Mobility  

• Pillar 2 – Connected Mobility 

• Pillar 3 – Electromobility 

At each pillar, first we will review the context, i.e. give a general overview of the future mobility form 
while highlighting the security, safety and privacy protection requirements. Next, we will present the 
scenarios that CARAMEL will specifically focus on. Then, we will present the requirements of the 
scenario. That includes information about the data collection/selection methodology as well as the use 
of AI/ML techniques. In the validation section, we will identify the testing and validation methodologies 
of the scenarios. Some of the scenarios will be validated using the simulation tools, while others will be 
showcased as CARAMEL real-life demonstrations. As a main innovation part of CARAMEL, the project 
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promises to deliver an Anti-hacking solution. The role of Anti-hacking solution will be also highlighted 
for each pillar.  

Before moving on into CARAMEL pillars, first let’s focus on the D2.1 stakeholder and some definitions. 

1.1 Stakeholders  

CARAMEL considers the needs of the entire cyber-security and automotive value chains, ranging from: 
(a) the general public that uses digital communications and future automotive products, (b) the cyber-
security solution providers, AI and ML methods developers, etc., (c) the infrastructure providers, 
represented by telecommunication infrastructure providers (telecom operators, ISPs), cloud service 
providers, and organisations with small, medium and large scale infrastructures that require a low-cost 
cyber-security investment, (d) vehicle manufacturing industry, i.e. automotive companies, equipment, 
system and solution providers for automotive industry, etc. CARAMEL further considers the needs of 
policy makers in EU & Member States for informed decisions regarding the security of modern 
infrastructures for future vehicle industry. Additional benefits are considered in the case for 
standardisation, other special interest groups, open source communities and researchers/academics. 
CARAMEL stakeholders are listed on Table 1.  

Target 
Group 

Main Players Impact/Market Opportunities 

Technology 
Suppliers 

Automotive suppliers and partners, automotive 
integrators, vehicle engineering companies, 
vehicle manufacturers, charging station 
component suppliers, manufacturers and 
integrators, in-vehicle charging infrastructure 
component suppliers, manufacturers and 
integrators, payment systems providers, ICT 
providers, Telematics/data management 
companies, cybersecurity companies 

Significant cost reduction due to 
enhanced security features 

Improved situational 
awareness, decision support 
and remediation  

Penetration testing methods 
developed / tested over 
intelligent and modern testbeds 

New cyber security services / 
products  

Simplification of their entry to 
new markets  

Development of business 
models for cyber-security 
services / products in future 
networks, especially for the 
automotive vertical 

 

Service 
providers 

EV charge sellers, local EV charge service 
companies, charging stations owners, 
specialised consulting companies, mobility 
service providers, automotive dealers and the 
aftermarket sector, insurance companies 

Operators 
Telecom operators, road operators, charging 
station network operators, logistics operators 

Research, 
Academia & 
Open 
Source 
Communities 

Researchers and academics from universities, 
research centres and R&D industry 
departments, open source communities 

Novel detection methodologies 

Open access to an operational 
environment that allows 
validation of situational 
awareness & cyber-security 
advances in an environment 
closely resembling actual 
operations  

Ensuring research integrity & 
credibility by providing medium 
scale testing 

Extension to available open 
source solutions, maturing them 
in terms of security 

Contributions to Open Source 
Threat Intelligence Platform & 
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Open Standards For Threat 
Information Sharing (MISP) 

Authorities 

Public authorities on mobility and cybersecurity, 
policy makers, regulators, national, local and 
international governmental agencies (ENISA), 
cities, GEAR2030, ministries, judiciary systems, 
national security agencies, national data 
protection authorities 

Novel improvements and 
recommendations   

Service and data protection 
methods, specifications for 
cyber-security aware services Standards 

organisation 
bodies 

Institute of Electrical and Electronics Engineers 
(IEEE), National Institute of Standards and 
Technology (NIST), Society of Automotive 
Engineers (SAE), International Organisation of 
Standardisation (ISO), AUTOSAR, ETSI (TC 
Cybersecurity Group, ITS, MEC), 3GPP, 
CEN/CENELEC 

Networks & 
Platforms 

Automotive 

5GAA, Car to Car 
– Communication 
Consortium (C2C-
CC), Connected 
Motorcycle 
Consortia (CMC), 
Auto-ISAC, Auto 
Alliance, Global 
Automakers 

Improved synergies among 
cyber-security and 5G / Future 
Internet projects  

Using the CARAMEL testbeds 
as a solid foundation for the 
creation of potential 
interoperable testing facilities 
across Europe. 

Mobility ERTICO, ALICE 

Cybersecurity 
ECSO, CSIRTs 
Network 

Telecommunications 

5GPPP, 5G 
Infrastructure 
Association 
(5GIA) 

ICT BDVA 

End-users 
General public, commercial fleets, public fleets, 
drivers, passengers, society, related 
associations, fleet customers, vehicle customer 

Better overall situational 
awareness and cybersecurity 
protection in future vehicles  

Improved protection of systems 
and data even in cases where 
endpoints are not sufficiently 
fortified 

Table 1: CARAMEL Project Stakeholders  

1.2 Definitions   

Before moving to the main part of this document which is the detailed explanation of CARAMEL pillars 
and the associated use cases, in this section, we would like to provide some definitions and guidelines 
that are useful to a better understanding of the CARAMEL solution and its role on three future mobility 
forms.  

CARAMEL focuses on an artificial intelligence-based cybersecurity solution in the context of the 
connected and automated vehicles. Therefore, it is worth to first focus on the role of AI/ML in the context 
of the project.  

 Role of AI/ML in the Context of CARAMEL 

The goal of CARAMEL is not the improvement of general pattern classification methods, but the project 
tries to demonstrate the use of AI/ML-based classification methods in detection and possibly mitigation 
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of dynamic cyber-attacks on the system/data in the context of future mobility. Therefore, in the following 
paragraphs, some general aspects of AI/ML are defined while the necessity for implementing simulation 
is explained.    

In many applications in mobility, particularly those addressed in CARAMEL, due to the diversity of the 
data streams the patterns of interest cannot be reliably classified by explicit programming. In such 
cases, if sufficiently large amounts of example (training) data are available or feasible to obtain, the 
most usual approach is to employ ML (typically using Neural Networks - NNs).  
 
In CARAMEL we focus on detecting “anomalies” in data streams using ML. In this context, the pattern 
class “anomaly” may infer “attack”. The classification ideally works on the basis of: 

• The well-defined nominal state of the systems in terms of its typical data stream patterns  

• More or less known patterns of attacks that - ideally but are not guaranteed to - cause 
detectable changes in the data streams.  

Mere deviation of data stream patterns (inferring deviation of the system away the nominal state) may 
not deliver sufficiently accurate classification (false+/false-). Therefore, the more anomaly patterns are 
known beforehand, the better. In other words, labelled training data is necessary combined with a ML 
method that is suitable for supervised learning.  

Typically, “very large” amounts of data are required to train a NN. This is the downside of avoiding the 
explicit modelling of the problem. The term “very large” is highly application dependent and up to a-
posteriori and subjective judgement. In bolder terms: beforehand, one never knows how much and 
which data is necessary to produce a satisfactory solution. 
 
When we talk about data, for sure it covers a wide range of option, from real-word data to synthetic 
data. In CARAMEL’s context it is clear from the beginning, that even for a set of selected and limited 
scenarios/use cases it is infeasible to collect sufficient volume of real-world data for: 

• Characterisation of the system nominal state  

• Generation of sufficient volume of real(istic) anomaly (attack) patterns to train a NN up to the 
point that it can provide an acceptably low rate of false+/false- for all realistic scenarios within 
the use-case.  

This is due to the fact that we are at the dawn of the next generation mobility and the required volume 
of data collected from the proper sources, in particular related to the cybersecurity issues, are not much 
available. In addition, compared to synthetic generation, the recording of real/physical data is very 
personnel-, time- and cost-intensive. For example, section 2.3.1. lists publicly available image sources 
of traffic scenarios. It is part of the tasks in CARAMEL to analyse the suitability of these data bases. 
Such databases are produced by different teams, sensors setups (e.g. focal lengths and other 
distortions, backgrounds, country specifics, etc.) and subsequent processing. It means they might not 
exactly serve the purpose of CARAMEL.  

Therefore, CARAMEL decided to employ a simulation tool whose purpose is twofold: first for evaluation 
related tasks and second to generate (additional) synthetic training data of “appropriate realism” in both 
nominal and attack patterns. Furthermore, intelligent combination methods will be developed to 
combine real and synthetic data to an even larger set of training data that is supposedly more realistic 
and captures elements of the “real thing” in a better way than pure simulation/synthetic data can. Note: 
The generation of synthetic data requires the actual human understanding of the problem, i.e. model 
assumption on the patterns, either attack or nominal. This is a task that CARAMEL will carry out in the 
future activities to produce proper data sets and ultimately suitable AI/ML solutions. Nevertheless, it is 
worth to note that the resulting realism of the synthetic data of course depends on:  

• The capability of the simulation tool,  

• The human effort and understanding invested in creating the synthetic environments 
intelligently and automatically,  

• Available computing power, 

• The necessary degree of realism to demo the core innovation (AI-driven alarm system). 
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CARAMEL will work on these points to provide the best possible results. It is also worth to note that, 
training can be done on synthetic data [3] or on hybrid data [4][5]. A comparison of the outcome of both 
can also reveal the quality (invested human intelligence and problem understanding) of the combination 
method:  
 
 

Real data + Synthetic data => Hybrid data 
 

 
where the “+” symbolises a potentially complex mechanism that combines both data types. It might be 
a good approach to develop a realistic CARAMEL solution empowered by AI/ML techniques to detect 
and mitigate cyber-attacks. In the case of image classification for example, the realism of synthetic 
scenario images is often obvious to judge by eye, less so in communication patterns. Remark: The label 
“Realism” in above context implies model assumptions and is a subjective property. It is exactly this 
above-mentioned human understanding of the problem at hand that defines the previously used term 
“similarity” between data (sets). Therefore, the similarity between, for example, a) publicly available 
data sets and b) the real-world situation in CARAMEL demos are not mathematically deducible but 
require empiricism and experience. 
 
Application of ML/AI implies the hope that the nature of the NN of choice (or whichever approach) is 
capable of some generalisation to input data that is not identical to the training data set. Anomaly 
detection via measurement of complex systems (or stochastic input data) that deny accurate model 
assumptions by huge or even infinite state spaces are a challenge. One can never tell if the most 
extensive measurement or simulation will ever capture sufficiently the interesting features of the system 
behaviour, overfitting and underfitting may go undetected, or the NN architecture may not provide the 
right degrees of freedom. To achieve at least some level of confidence the available data is split into a 
training and test set (more than one partitioning possible) and are also interchanged. A result may be 
that the data is not representative w.r.t. the features of interest. Which these features are is often not 
obvious to tell since the system cannot be modelled explicitly. CARAMEL will put efforts to find the best 
trade off to obtain a reasonable result, thus, verifies the possibility of employing AI/ML solutions on the 
future automotive sector.   

 Overview of CARAMEL Anti-Hacking Solution: General 

Architecture and Functionality 

The CARAMEL anti-hacking solution is an important part of the project innovation. In this section, we 
have a deeper look on the general architecture and functionalities of it.  

The anti-hacking device is a physical controller that is integrated into the car and acts as an attack 
detection device. In the Autonomous Mobility scenario its task is to run pre-trained ML models that work 
on the sensor data to detect anomalies that might point to malicious attacks. Additionally, the anti-
hacking solution might be used for different functions in the context of the CARAMEL project, i.e. if 
needed it can ensure security for an embedded application platform. In this case, the software layer of 
the solution might be employed only. Further details about this approach will be presented in the rest 
of this document.   

The anti-hacking device is connected to the busses in the car carrying the sensor data. It passively 
monitors the bus traffic (e.g. CAN bus frames) and extracts the raw sensor data. 

Figure 2 shows the ML pipeline where raw data, e.g. from the CAN bus is pre-filtered and aggregated 
to make it suitable for the following machine learning stage to detect threats and attacks. Any security-
relevant events are then forwarded to the visualization and mitigation components in the car. 

The ML knowledge base (model) is pre-loaded into the anti-hacking device. The model will have been 
created offline on a more powerful system based on simulated and real-world training data (on the 
above section we discussed touched upon this subject. In the following activities of CARAMEL more 
inputs in this regard will be produced and reported).   
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Figure 2: Machine Learning Pipeline 

 

 

Figure 3: Anti-hacking Device Software Architecture 

Figure 3 shows an overview of the software and hardware architecture of the anti-hacking device. From 
bottom-up the following components make up the anti-hacking devices: 

• HW Interfaces: The anti-hacking device will be connected to the in-car systems via appropriate 
interfaces used in the automotive industry such as the CAN bus or Automotive Ethernet 
connections. For integration into development and simulation frameworks standard Ethernet 
will also be supported. 

• The anti-hacking device will also support machine learning (ML) hardware. Since the anti-
hacking device is based on the Coral Dev Board the Tensorflow Lite Processing Unit (TPU) is 
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the hardware element to support ML. For a development and simulation configuration the Coral 
USB Accelerator will also be supported. 

• HSM (hardware security module): To provide security-related functions of the anti-hacking 
device the hardware will integrate a Secure Element or HSM in the form of a TCOS (Telekom 
Card Operating System) embedded smartcard module that supports secure storage of private 
keys and different cryptographic operations. 

• The anti-hacking device itself is based on an NXP Freescale i.MX8 processor that supports 
security functions such as hardware-assured boot. 

• On this security hardware runs a Yocto-based firmware layer (a Linux embedded meta 
distribution). 

• On top of this firmware substrate Docker-based application-specific containers can be loaded. 
Out-of-the box there will be crypto containers supporting the security functions of the anti-
hacking device. ML workloads will be also be implemented as containers that have access to 
the underlying ML hardware as well as the crypto functions exported by the crypto container. 

• The anti-hacking device could also act as a secure run-time environment for other functions as 
needed by the different use cases. 

 

Figure 4: Anti-hacking Device Hardware 

Figure 4 shows a picture of both the final target hardware - the Coral Dev Board1 - as well as the solution 
for development and simulation - the USB Accelerator. 

The Coral Dev Board has the following hardware specifications: 

• CPU: NXP i.MX 8M SOC (quad Cortex-A53, Cortex-M4F) 

• GPU: Integrated GC7000 Lite Graphics. 

• Coprocessor: Google Edge TPU. 

• RAM: 1GB LPDDR4. 

 
1 https://coral.ai/docs/dev-board/get-started/ 
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• Flash memory: 8GB eMMC. 

• Connectivity: Wi-Fi 2×2 MIMO (802.11b/g/n/ac 2.4/5GHz) Bluetooth 4.1. 

• Dimensions: 48 x 40 x 5mm. 

The i.MX8 SOC includes advanced security features such as HAB (high-assurance boot) and CCAM 
(Cryptographic Accelerator and Assurance Module) that will support the security features of the Anti-
hacking device. The firmware for the i.MX8 SOC will be created using the Yocto environment which is 
an industry-standard toolkit to create custom embedded firmware images in a reproducible manner. 
Our build process will support signed bootloaders and Linux kernel in order to prevent tampering with 
the anti-hacking device software and configuration. 

The Coral Dev Board also has many connectivity options integrated on the board: 

• Ethernet port (can be used for IP-based connections in a simulation and test environment, or 
to attach Automotive Ethernet adapters if needed) 

• GPIO and I2C ports (used for connecting the HSM module, can be used for other purposes as 
well) 

• USB port (used in the project to connect USB-to-CAN-bus converters) 

• Wireless connectivity - Wi-Fi and Bluetooth 

The Edge TPU processor integrated into the Coral Dev Board supports the execution of Tensorflow Lite 
models, performing 4 trillion operations (tera-operations) per second (TOPS), using 0.5 watts for each 
TOPS (2 TOPS per watt). The same Edge TPU is integrated into the USB Accelerator stick, so similar 
performance can be expected in the Anti-hacking Device simulation environment. 

 

 

Figure 5: Conversion of Tensorflow model for use with Edge TPU2  

Figure 5 shows how TensorFlow models created by a machine learning process (e.g. running in the 
cloud or on project hardware) can be converted for use with either Coral Dev Board or the Coral USB 
Accelerator. 

The I2C ports of the Coral Dev Board will be used to connect an HSM (hardware security module) 
based on the TCOS (Telekom Card Operating System) specification to act as an embedded Secure 
Element (eSE) and security anchor for the Anti-hacking device. The HSM is meant to support the 
following functions: 

• Authentication of the Anti-hacking device for remote provisioning and updates 

• Provide support for other CARAMEL use cases that need HSM functionality 

 
2 Source: compile-workflow.png 

https://coral.ai/static/docs/images/edgetpu/compile-workflow.png
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• Authentication of the anti-hacking device against central systems such as Automotive SOC 
(Security Operations Centre) for event reporting and alerting 

 

Now that we have a better understanding of CARAMEL definitions let’s move on to the three mobility 
pillars targeted by the project.  
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2 Pillar 1 - Autonomous Mobility  

2.1 Context 

Automated driving systems were developed to automate, adapt and enhance vehicle systems for safety 
and improved driving. Most road accidents occur due to human error, and automated systems use input 
from sensors like video cameras to reduce human error by issuing driver alerts or controlling the vehicle. 
Such systems have become common in modern cars, with automobile manufacturers integrating these 
systems in their cars. There are six levels of automation as shown in Figure 6. When it comes to 
Advanced Driver Assistance Systems (ADAS), the highest level (5) corresponds to full automation where 
the automated functions control all aspects of the car, and the lowest level (0) where the driver controls 
all aspects of the car. 

 

Figure 6: Society of Automotive Engineers (SAE) Automation Levels  

Recently, these systems have attracted increased attention within academia, and the academic 
community has begun to investigate the systems’ robustness to various attacks. Recent studies [6] [7] 
[8] showed that ADAS alerts and notifications can be spoofed by applying adversarial machine learning 
techniques to scene structural elements (e.g. traffic signs, objects, etc.) 

Adversarial attacks seek small perturbations of the input causing large errors in the estimation by the 
perception modality. Attacking perception functions using adversarial examples is a popular way to 
examine the reliability of learning approaches for data classification [9]. The key to all such attacks is 
that the change to the image should be minor yet have a large influence on the output. Adversarial 
examples typically involve small perturbations to the image that are not noticeable by the human eye. 
The adversaries are shown to work even when a single pixel is perturbed in the image [6]. Although 
these attacks reveal limitations of deep networks, they are hardly replicated in real-world settings. For 
instance, it is rather difficult to change a scene such that one pixel captured by a camera is perturbed in 
a specific way to fool the network. However, recent work on [10] [11] demonstrate that adversarial 
examples can also work when printed out and shown to the network under different illumination 
conditions. [12] shows that adversarial examples can be 3D printed and are misclassified by networks 
at different scales and orientations. [13] constructs adversarial glasses to fool facial recognition systems. 
[14] show that stop signs can be misclassified by placing various stickers on top of them. 

Apart from the adversarial attacks, which involve scene modifications on the physical layer, within the 
Autonomous driving, the vulnerability of the Perception Engine is also an important issue to address. 
CARAMEL focuses on this point thanks to the perception engine contributed by Panasonic Automotive 
Europe. The Perception engine has to be secured against a variety of cyber-attacks at the sensors layer 
with the help of proper approaches for detecting the attacks and mitigating them. 

In line with what is described above, CARAMEL in the framework of autonomous mobility (pillar 1) 
believes the following scenarios presented in Table 2 are the most important cases to be addressed. 
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Note that the presented scenarios are selected based on the CARAMEL consortium knowledge, 
available resources and showcasing capacity.  

Description 

 1 

Adversarial attack on traffic signs: This is an attack on the physical layer. It assumes 

disturbance of the visual appearance of structural elements of the scene like the traffic 

signs. According to this attack, minor changes might be introduced, e.g.: stickers attached 

on the traffic signs in such a way that they might be marginally observable by the human 

eye but disturbing the scene perception output. The cyber-attack detection & mitigation 

engine will get as input the traffic sign topology from the perception engine and will assess 

the occurrence of cyber-attack. 

2 

  

Adversarial attack on lane/parking markings: As the above, this is also an attack on the 

physical layer. It is oriented towards distorting the appearance of lane/parking markings. 

The change could involve distortions in a multitude of appearance characteristics, e.g.: 

shape/length/colour. This attack should introduce minor changes in such a way that they 

could be marginally detectable by the human eye but finally affecting the output of the 

scene perception engine. The cyber-attack detection & mitigation engine should detect 

the occurrence of the cyber-attack and perform restoration in case that the restored 

version is derived with high confidence. 

3 

  

Attack on the Camera Sensor Layer: This scenario would involve a cyber-attack based 

on activating some malicious software which got installed during the software update 

process. Throughout this use-case the camera sensor could be attacked in a number of 

different ways, which could vary between adding noise lying on specific bands of the 

frequency spectrum/ introducing morphological deformations/ on the whole or parts of the 

image. 

  

4 

Attack on the Camera Sensor Layer by de-synchronizing the data: Throughout this 

scenario, the cyber-attack will be geared towards disturbing the association between the 

captured frames and the timestamp assigned to them. This will cause the failure of the 

perception engine, as all the architectural modules performing stochastic filtering on the 

scene observations will be affected by error. This use case should study the potential and 

the limitations of the cyber-attack detection and mitigation engine in assessing and 

recovering the failures.  

5 

Attack on the Camera Sensor by a remote agent: In addition to the aforementioned 

scenario, the cyber-attack detection and mitigation engine will be used to detect and 

mitigate the camera signal distortion in the case that a malicious remote agent interferes 

with the test vehicle by knowing the IP of the processing unit and sharing some erroneous 

data. More specifically, this use case will assume that the remote agent sends via V2X 

communication: time zone/ daylight related data in order some sensor parameters (e.g.: 

gain/exposure time) to be tuned accordingly.  

6 

Attack on the LiDAR sensor: Apart from the camera, cyber-attacks on the LiDAR sensor 

is another important issue. As in use cases 3-5, the attack will involve triggering malicious 

software through either a remote agent or some date-related software update process. 

The malicious software could distort multiple attributes of the LiDAR signal which could 
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vary by either adding noise to the measured data or changing arbitrarily some of the 

sensor configuration parameters (e.g.: scanning frequency).  

Table 2: List of CARAMEL Scenarios on Autonomous Mobility    

2.2 Scenario Description  

CARAMEL scenarios on Autonomous Mobility can be classified into two big categories: physical 
adversarial attacks and attacks on the camera sensor. In this section, we will present them in more 
details. When referring to physical adversarial attacks we will consider attack scenarios where changes 
in the physical world will cause the cyber system in the autonomous vehicle to misbehave. Such is the 
example of physically manipulating traffic signs. Camera sensor attacks refer to the scenario where an 
attacker manages to access critical vehicle systems and manipulate directly the camera image. In such 
scenarios, detection and mitigation techniques will also utilize multiple additional sensor inputs such as 
lidar.   

 Physical Adversarial Attacks 

Deep learning solutions are used in several autonomous vehicle subsystems in order to perform 
perception, sensor fusion, scene analysis, and path planning. State-of-the-art and human-competitive 
performance have been achieved by ML on many computer vision tasks related to autonomous vehicles 
[15]. Nevertheless, over the last years it was demonstrated that ML solutions are vulnerable to certain 
visual attacks [16] that can cause the autonomous vehicles to misbehave in unexpected and potentially 
dangerous ways, for example on physical modification of the environment and especially traffic signs 
[17] [18].  

It is considered that these attacks and modifications are physically added to the objects themselves. 
The traffic signs were selected as the main target domain of this scenario for several reasons discussed 
below:  

• The relative visual simplicity of road signs.  

• Road signs exist in a noisy unconstrained environment with changing physical conditions such 
as the weather, lighting, distance and angle of the viewing camera,  

• Road signs play an important role in transportation safety.  

• A reasonable threat model for transportation is that an attacker might not have control over a 
vehicle’s systems but is able to modify the objects in the physical world that a vehicle might 
depend on to make crucial safety decisions. 

In this scenario, the autonomous vehicle is expected to drive from a starting location to a given 
destination following a specified path. Throughout this path, certain traffic signs will be physically 
modified. An example could be the stop or turn left/right signs due to their important role in transportation 
safety. Figure 7 demonstrates an example of a physical attack from a real graffiti at the left and from an 
engineered attack aiming to make the ML system fail but most humans would not consider it suspicious 
[19].  

 

Figure 7: Appearance perturbations on Traffic Signs  
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Figure 8 represents the related scenario. The attacker modifies physical traffic signs. The autonomous 
vehicles with all the available sensors and mainly the camera aims to detect the attacks, provide 
notifications to the operator through HMI and to the other connected vehicles. Furthermore, the 
improved robust ML deep learning models should be able to overcome and not be affected by these 
attacks 

Figure 8: Adversarial Attacks on Traffic Sign 

 

The components existing in the traffic sign physical attack scenario are as follows: 

● Autonomous vehicle:  An autonomous vehicle embodying a multitude of on-board sensors 
(cameras, ultrasonic, GPS, Lidar, radar) and AI providing sufficient information related to the 
vehicle localization, the surrounding obstacles and the possibility of collision. 

● Visual sensors: all the available vision related sensors (e.g. Camera, LiDAR, etc.) will be 
considered in this scenario. In practice the camera sensor will be utilised, as it is the main 
sensor for scene understanding and traffic sign detection and recognition. 

● Path planning system (PPS): PPS is a basic framework which defines the objective for the 
autonomous vehicle to move from one place to another. To achieve this, the PPS must choose 
a path and adjust to obstacles, terrain, and changing conditions to reach its destination safely. 
Note: The use case does not require/have access to the autonomous vehicle PPS to work.   

● Attacked traffic signs: Real traffic signs will be modified and placed at the test area. Regarding 
the simulation models of traffic signs with attacks, they will be placed in the virtual environment.  

The possible CARAMEL components to be integrated and the required functionalities from them are 
listed below: 

● Machine Learning component for sign attack detection (anomaly): ML models trained to 
detect attacks on traffic signs will be integrated to this scenario. The models will be based on 
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various state-of-the-art architectures to detect anomalies. More details are available in section 
2.3.2. 

● Robust ML model for sign attached: ML models trained to overcome such attacks will be 
integrated into the architecture.  

Although adversarial attacks on the traffic signs comprise a very interesting use case for evaluating the 
potential and the limitations of CARAMEL’s solution on addressing cyber-attacks, the possibility of 
reproducing this use case on the test area with Panasonic’s vehicle remains to be verified based on the 
input of the test area operator. Given the fact that the test area is managed by a third-party service 
provider, the consensus of the operator on distorting the appearance of existing traffic sign structures 
needs to be provided. However, this scenario will be extensively investigated in the simulator as the 
flexibility provided there by the simulation environment will allow detailed analysis on the precision of 
ML module in detecting and mitigating the attacks. 

Table 3 describes the traffic sign attack scenario while Figure 9 shows the roles of the actors identified 
for this use case.  

 

Use case Scenario ID and Title Priority level 

Autonomous Vehicles – 
Traffic Sign Physical 
Attack 

Detection and reaction to physical attacks on traffic 
signs 

High 

Robustness to physical attacks on traffic signs High 

Table 3: The Traffic Sign Attack Scenario Definition  

 

● Vehicle operator/ passenger – a person responsible to operate the vehicle in the case of a 

not fully automated one, monitoring the environment and the vehicle behaviour. They are 

responsible for receiving notifications from the CARAMEL platform and taking the necessary 

measures to react to the physical attacks. 

● Connected Vehicles – a list of other vehicles connected to the current one and the 

corresponding operators or passengers. They are responsible for receiving related notifications 

and acting accordingly. 

● Cyber-attacker – a person conducting the physical-attack either randomly or considering 

adversarial permutations on physical objects such as traffic signs 
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Figure 9: High-level Description of the Roles in the Scenario 

Table 4 summarizes the physical adversarial attack and identifies the evaluation criteria. 

Scenario 
Name 

Detection of physical attacks on traffic signs 

Related Pillar Autonomous Vehicle Simulator 

Scenario Description The scenario deals with two kinds of attack: attacker vandalises traffic 
signs i.e. some random graffiti that hides a different part of the sign or a 
coordinated attack such as generating ML based image to cover the 
signs.  

Brief Description The autonomous vehicle moves in the test area. Certain traffic signs have 
been physically modified in order to influence the driving behaviour and 
planning of the autonomous vehicle. CARAMEL’s platform is operating in 
parallel to the driving system of the autonomous vehicle without 
influencing the decision-making module. When the vision-related sensor 
and the ML components of CARAMEL detects a physical attack, a 
corresponding notification will be displayed to the vehicle operator or 
passenger. 

Challenges 
1. Ability to detect physical attacks on traffic signs 
2. Improved robustness on physical attacks 

Assumptions & 
Pre-Conditions 

1. Datasets (real and synthetic) for traffic signs are available 
2. The camera and vision sensors are properly calibrated for both 

the real and simulated cases 

Goal (Successful 
End Condition) 

The physical attack on the traffic signs is successfully identified without 
affecting the driving behaviour and the decision-making processes of the 
autonomous vehicle. 
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Involved Actors 
1. Attacker 
2. Vehicle operator/ passenger 

 

Scenario 
Initiation 

An autonomous vehicle from a given location is instructed to drive to a 
selected end destination. 

Main Flow 1. Selection of starting and ending location. 
2. Data acquisition mainly from the camera sensor. 
3. Physical attack detection for traffic signs 
4. Robust model deployment in parallel with step 3 
5. Operator notification 

Evaluation 
Criteria 

CARAMEL platform detects the attacked signs and notifies the vehicle 
operator allowing them to take appropriate remedial actions. 
Metrics related to the detection and recognition accuracy such as F1 
score, Precision and Recall will be considered. 

 Table 4: Overview of the Physical Adversarial Attack Scenario 

As discussed in Table 2, apart from the adversarial attacks geared towards physically distorting the 
appearance of some of the scene structural elements, CARAMEL also targets to study the potential of 
cyber-attack detection techniques in estimating the occurrence of attacks on the sensor signal, camera 
being the most possible candidate. Throughout the subsequent subsection, the possible methods for 
signal distortion will be investigated along with methods for mitigation. 

 Attack on the Camera Sensor 

Besides physical attacks that can induce erroneous cyber-system behaviour there is also the possibility 
that the camera data can be manipulated directly thus eliciting false algorithmic inferences. This can 
cause an AI-based perception module/controller to make incorrect decisions, such as when an 
autonomous vehicle fails to detect a lane/ parking marking and results to a collision.  

To realize the autonomous driving functions, it is highly needed to localize and classify the obstacles in 
the vicinity of the vehicle. This process in contrast to image classification tasks necessitates identifying 
the location of all objects within the image. The last few years there has been a growing concern on  
the cyber-security of perception modules for object localization such as object detectors and object 
segmentation [6] [20], because DNNs are known to be vulnerable to adversarial examples (AEs) as 
shown in Figure 10. Compared to the image classifiers, the object detectors and image segmentation 
models are more challenging to attack, as the AEs need to mislead not only the label predictions but 
also the object existence prediction (whether there is an object). Adversarial attacks can be performed 
on the machine vision algorithm and video/image processing algorithm used for object detection (road, 
obstacles, road signs, etc.) by altering the image captured by the camera. More importantly, unlike 
classifiers that are always working on stationary images, object detectors are commonly applied in an 
environment where the relative position between the objects and the camera may keep changing due 
to the relative motion of both, e.g. object detectors on fast-moving autonomous driving vehicles. 
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Figure 10: Targeted Perturbation Attack (either physical or digital) on the Camera Feed 

Recently, it has been shown that it is possible to generate robust AEs to attack the state-of-the-art 
object detectors [21] and driving models [22] used in the real world. Attackers can succeed with these 
tactics even if they don’t know the details of how the target neural net was constructed or trained. 
Adversarial tampering can be extremely subtle and hard to detect, even all the way down to pixel-level. 
Typically, two forms of attacks are considered. Hiding Attack (HA) which makes the perception module 
failing to recognize an entity in the environment, and Appearing Attack (AA), which makes the 
perception module mis-recognize the AE as a different element specified by the attacker. 

This scenario studies the impact of attacking the camera signal and the disturbance that it produces on 
the perception module output. It is considered that such a scenario provides another vector of attack 
that can be used by mischievous parties to make the vehicle perception engine to misbehave [7] by 
either: 1) misidentifying or not detecting certain objects 2) failing to spot specific markings and 3) failing 
to detect lane lines amongst others. Hence, it can cause collision. Figure 10 demonstrates the use case 
of an HA attack, where the pedestrians were hidden by noise corrupted camera signal. 

In this scenario, the autonomous vehicle will move along two predefined points on a path and at a given 
time instance the camera signal will be attacked in order to introduce malicious problems on the 
perception engine output (e.g., disturbing the detection of lane/parking markings or hiding objects lying 
within the field of view). The previous figure also demonstrates one such example where the pedestrians 
are masked causing the vehicle to steer forward since there is no obstacle detected.   

To address the detection of such an attack, the output of the remaining sensor modalities can be used 
[23]. We assume that the attack is carried out on the image captured by the camera. Hence, additional 
modalities such as LiDAR can be used to detect potential discrepancies [8]. For example, if a side 
camera fails consistently to detect a parking spot whereas the front camera has detected the slot in the 
predefined location in the map and the LiDAR sensor also confirms the absence of obstacles in the 
same location then this can be considered as flagged incident and this information will be communicated 
through the Human Machine Interface (HMI) to the driver. 

Table 5 describes the adversarial attack on the camera sensor to hide/appear objects. The components 
existing in the projected patterns attack scenario are as follows: 

● Autonomous vehicle: A simulated vehicle with the basic autonomous functionality features 

● Camera sensors: The camera sensor will be utilized which is the main sensor for detection and 
perception 
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● LiDAR sensor: Used to provide an additional modality to the perception module. This enables 
the detection of attacks on the visual sensor. 

● Path planning system: Will follow a predetermined route. 

● Altered Images: Images with added perturbations. The images from the vehicle camera stream 
will be collected and used to generate malicious perturbations. These perturbations will be 
injected in the vehicle field-of-view.  

Table 6 summarizes the adversarial attack on the camera sensor scenario and identifies its evaluation 
criteria. 

Use case Scenario ID and Title Priority level Related requirements 

Autonomous Vehicles 
– Camera Sensor 
Attack  

Environment Hiding 
Attack 

High Attacker has inserted 
malicious code within 
the vehicle that can 
cause the adversarial 
attack 

Environment 
Appearing Attack 

Medium 

Table 5: The Attack on the Camera Sensor Scenario Definition 

 

Scenario 
Name 

Adversarial attacks on camera sensor 

Related Use 
Case Autonomous Vehicle 

Scenario 
Description First, an attacker may analyse public freely available object detectors to find 

attacks. This phase is usually offline. The second phase is the attack 

deployment where the perturbations are applied on one of the camera sensors 

that are on board. The demonstration of this scenario will involve the attack 

application phase within simulation context. 

Brief Description 

The autonomous vehicle is expected to drive from a starting location to a given 

destination following a specified path. At a given time instance the image of 

the vehicle will be tampered through a specific perturbation intended to cause 

the perception module to misbehave (e.g., either detect objects that are not 

truly present or hide objects that are within the field of view). 



CARAMEL (No. 833611) D2.1 March 2020 

Page 30 of 117 
 

 

Challenges 1. Ability to detect adversarial attacks on the camera signal that disturb 

the detection of important elements in the scene. 

2. Improved robustness on adversarial attacks. 

Assumptions & 
Pre-Conditions 

1. Datasets of environment structures (e.g., parking markings, 

pedestrians, vehicles, driving lines) in realistic driving conditions are 

available 

2. The camera image sensors are properly calibrated 

3. The camera feed can be accessed, altered and then can be fed back 

to the perception module. Otherwise, the attack scenario will follow 

the flow of the physical attack. 

Goal 
(Successful 
End Condition) 

The attack on the camera image is successfully identified and if possible, 

without affecting the driving behaviour and the decision-making processes of 

the autonomous vehicle. 

Involved Actors 1. Attacker 

2. Vehicle operator 

Scenario 
Initiation An autonomous vehicle from a given location is instructed to drive through a 

predefined area. 

Main Flow 1. Selection of starting and ending location. 

2. Data acquisition mainly from the camera sensor. 

3. Adversarial attack detection targeting a perception module. 

4. Operator notification 

Evaluation 
Criteria The adversarial detection within the CARAMEL platform will detect the attack 

and notify the vehicle operator allowing them to take appropriate actions. The 

evaluation will be performed both in the simulator and on the real vehicle.. 

Metrics related to the detection accuracy will be considered. 

Table 6: Overview of the Camera Sensor Attack Scenario  

One of the crucial factors in efficiently detecting and mitigating cyber-attacks is to properly parameterize 
and tune the learning modalities employed in the CARAMEL architecture. Since the implicit definition 
of the learning schemes would require complex analytical expressions which is difficult to be proven as 
convergent, we will try to solve this part of the problem by using Machine Learning. In this case, the 
parametrization of the learning scheme will be automatically defined during the training phase. Thus, 
proper selection of the training sets so as them to closely resemble the characteristics of the data 
encountered on real scenes, is very important. Section 2.3 discusses the data collection strategy to be 
followed as well as the augmentation techniques that the consortium will adopt in order to suppress 
overfitting cases and lack of generalization. 
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2.3 Data Collection/Selection Methodology 

The dataset used for training will be based on 3 major pillars: (a) synthetic dataset, (b) real dataset, (c) 
augmented data. Throughout the following subsections the criteria for structuring the dataset will be 
extensively discussed. 

 Synthetic Dataset for Traffic Signs 

Table 7 describes the offline variants of the data records that can be created by customizing the 
simulation tool. The headings for each column are described as follows: 

● Attack Class: type of attack. 

● Attack Variation: manipulation methods used to perform attack. 

● Location: refers to various settings and conditions e.g. location, world, junction, straight etc. 

● Time of Day: day or night, can also be expanded to include dusk. 

● Weather: different weather conditions 

● Signs/Duration: presents the duration in number of frames and the amount of possible signs 
used for each dataset. 

Note: It is expected to have around 10000 samples for each data class.  

Attack class Attack 
Variation 

Location Time of Day Weather Signs / 
Duration 

Normal (no 
attack) 

None > 3 Locations Day / Night Sun / Cloudy 
/ Rain 

20 signs for 30 
frames 

Attacked with 
Noise 

Gaussian 
Noise, Masking 
/ Obstruction 

> 3 locations 
 

Day / Night 
 

Sun / Cloudy 
/ Rain 

20 signs for 30 
frames 
 

Adversarial 
Attack 

ML generated 
attack 

>3 locations Day / Night Sun / Cloudy 
/ Rain  

20 signs for 30 
frames 

Table 7: Offline Variants of the Data Records 

Additionally, the data generation method should support different types of cameras (e.g. wide field of 
view) and customizable cameras so as to resemble the target position of the camera on the real vehicle.  

In order to produce datasets embodying information from both camera and LiDAR sensors, we can use 
simulators, e.g. CARLA [37], Using such simulators it will become feasible to export high-quality, 
synchronized LIDAR and camera data with object annotations reflecting real-life sensor arrays.  

Apart from the volume of visual/LiDAR data produced by the simulation environment, CARAMEL’s 
Adversarial Attack detection engine will be benefitting by incorporating some publicly available dataset 
in the training process. Throughout the subsequent subsection we are going to provide a brief overview 
of the available datasets along with its characteristics and possibility to be incorporated in the training. 
More specifically, Table 8 presents numerous visual datasets on traffic signs, while Table 9 summarizes 
the available datasets produced by the automotive sensing community, which apart from the camera, 
incorporate other sensors as well. 



CARAMEL (No. 833611) D2.1 March 2020 

Page 32 of 117 
 

 

 Publicly Available Dataset for Traffic Signs 

Table 8 shows the list of publicly available datasets for traffic signs. These datasets will be used to train 
the machine learning models and to generate the attacks described in the section above. 

Dataset Description Sample 

LISA Traffic Sign [24] The LISA Traffic Sign dataset is a US traffic signs 
dataset that contains set of videos and annotated 
frames. 

● 47 US sign types 
● 7855 annotations on 6610 frames. 
● Sign sizes from 6x6 to 167x168 pixels. 
● Images obtained from different cameras. 

Image sizes vary from 640x480 to 1024x522 
pixels. 

● Some images in colour and some in 
grayscale. 

● Full version of the dataset includes videos 
for all annotated signs. 

● Each sign is annotated with sign type, 
position, size, occluded (yes/no), on side 
road (yes/no). 

 

Mapillary Global [25] The dataset contains a diverse street-level image 
with bounding box annotations for detecting and 
classifying traffic signs around the world. 

● 100,000 high-resolution images (52,000 fully 
annotated, 48,000 partially annotated) 

● Over 300 traffic sign classes with bounding 
box annotations 

● Global geographic reach of images and 
traffic sign classes, covering 6 continents 

● Variety of weather, season, time of day, 
camera, and viewpoint 

 

The German Traffic 
Sign Recognition 
Benchmark (GTSRB) 
[26] 

 GTSRB is a multi-class, single-image classification 
challenge.  

● Single-image, multi-class classification 
problem 

●  More than 40 classes 
●  More than 50,000 images in total 
●  Large, lifelike database 
● Reliable ground-truth data due to semi-

automatic annotation 
● Physical traffic sign instances are unique 

within the dataset (i.e., each real-world 
traffic sign only occurs once) 
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The German Traffic 
Sign Detection 
Benchmark (GTSDB) 
[27] 

GTSDB is a single-image detection assessment for 
researchers with interest in the fields of computer 
vision, pattern recognition and image-based driver 
assistance. 

●  a single-image detection problem 
●  900 images (divided in 600 training images 

and 300 evaluation images) 
●     division into three categories that suit the 

properties of various detection approaches 
with different properties 

●     an online evaluation system with 
immediate analysis and ranking of the 
submitted results 

 

Table 8: Publicly Available Dataset for Traffic Signs 

 Publicly Available Datasets Featuring the Raw Sensor 

Camera and LiDAR Data 

Table 9 shows the list of publicly available datasets for raw sensor camera and LiDAR data. These 
datasets will be used to train the expected machine learning models and to generate the attacks 
described in the section above. 

 

Dataset                Description                    Sample       Link 

Lyft Main features: 

● Up to 7 cameras 
● Up to 3 lidars 
● Over 55,000 3D annotated 

frames 
● A drivable surface map 
● An HD spatial semantic map 
● 4,000 Lane segments 
● 197 Crosswalks 
● 60 Stop signs 
● 54 Parking zones 
● 8 Speed bumps 
● 11 Speed humps 

 
 

 

Lyft Data 

Kitti Kitti contains a suite of vision tasks 
built using an autonomous driving 
platform. The full benchmark 
contains many tasks such as stereo, 
odometry, 3D object detection, 3D 
tracking, etc. 

 

 

Kitti Data 

https://level5.lyft.com/dataset/
http://www.cvlibs.net/datasets/kitti
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Motion 
Distorte
d Lidar 

This is a large-scale dataset 
generated using CARLA, aiming to 
dynamic object detection. 
 
Main features : 
    • Town 1 (2.9 km of drivable roads 
      with 90 vehicles) 
    • Town 2 (1.9 km of drivable roads 
      with 60 vehicles) 
 

 
 

 
 

Motion 
Distorted 
LiDAR Data 

Table 9: Publicly Available Dataset for the raw Sensor Camera and LiDAR Data 

2.4 Use of Artificial Intelligence and Machine Learning     

 Physical Attack on Traffic Signs 

The Machine Learning (ML) algorithms will be used for the detection and identification of attacks or 
anomalies in traffic signs. Various research has demonstrated that recognition-based models are 
vulnerable to engineered visual attacks [16]. Therefore, additional ML models should be utilised to 
identify such attacks.  Following are the key area where ML will be used: 

1. Anomalies Detection:  

Auto Encoder (AE) has been a popular option for detecting anomalies [28]. When an anomaly 
is defined as a one-class classification problem, AE can be trained to re-create the dominant 
class of training dataset. Once, AE has learnt to re-create the class it has seen before, it is 
expected that any new and novel classes are re-created poorly. By measuring how poorly the 
network performs on unseen data, it is then possible to classify the new point as an abnormal 
or normal class. Similarly, Generative adversarial network (GAN) has been extensively used in 
the identification of anomalies within the image and videos [29].  

2. Mitigation processes 

ML can be trained to recover cyber-attacks or reconstruct the missing or obstructed part of the 
images [30] [31]. This can be particularly important to improve the robustness of the model. 
Such models can be used to reconstruct the traffic signs that are vandalised or obstructed. 
Likewise, other useful attributes such as improvement of road layouts can be carried out using 
similar techniques [32].  

3. Generation of simulated attacks 

Several adversarial approaches have been proposed to generate attacks in the form of small 
perturbations to images that remain almost imperceptible to human vision but such attacks can 
cause detection-base model to significantly decrease the detection and recognition 
performance [33] [34]. ML will be used to generate such simulated attacks.  

The basic goal of the use of machine learning in addressing adversarial attacks on the physical layer is 
two-fold: (a) at first the detection of the attacked patterns needs to be tackled while at a subsequent 
step (b) we are also interested in producing via ML a multitude of attack patterns and use case scenarios 
that result in resembling real world attacks. The increased data volume should improve the overall 
performance of the ML model. In order the enhance the generalization capability, data augmentation 
will be considered. Thus, training should involve first train the model with synthetic data and then fine-

http://asrl.utias.utoronto.ca/datasets/mdlidar
http://asrl.utias.utoronto.ca/datasets/mdlidar
http://asrl.utias.utoronto.ca/datasets/mdlidar
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tune it with real-world data. This process is necessary as a model trained with only synthetic data won't 
perform as good as real data.  

Further to defining the usage of ML in addressing the attacks on the physical layer, we will also 
summarize its role in tackling sensor attacks as well. 

 Attack on Camera Sensor 

The Machine Learning (ML) algorithms will be used for the detection and mitigation of direct attacks on 

the camera sensor data. Research has shown that through multimodal sensing it is possible to detect 

mis-behaving sensors thus detecting potential attacks. Additional AI/ML models will also be utilised to 

identify such attacks from image source and either discard the image sensor or attempt to reconstruct 

the input image. Figure 11 presents the concept of using AI/ML in the autonomous vehicle case in the 

attack on the camera sensor. In summary, the main components utilizing the AI/ML are the following:  

 

 

Figure 11: Concept of using ML in the Attack on the Camera Sensor 

1. Scene Perception Model 

A model that will utilize AI/ML to detect a specific environment object (road area, parking markings, 
vehicle, pedestrian, lane line). For the purposes of CARAMEL, we consider such models as given and 
will only train such models if the underlying functionality is not available.  

2. Attack on the Image 

It will be used to simulate attacks or adversarial examples as presented in [35]. They are deliberately 
calculated perturbations to the input that can result in an error in the output from the perception model. 
Autonomous vehicles developed nowadays lack robustness to adversarial conditions. They can be 
directed by expert knowledge of the attacker of underlying the AI/ML perception model to be more 
effective. There are many methods that aim to compromise the integrity of ML/DL models. Most of them 
rely on gradient in order to fool the models.  
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Regarding the adversarial examples a perturbation is calculated by approximating an optimization 
problem given in Equation (1) iteratively until the crafted adversarial example gets classified by ML 
classifier in targeted class. 

  

●      x is the correctly classified sample 

●      x* is an adversarial sample 

●      d is the perturbation 

●      f is the classifier 

●      t is the targeted class 

      

3. AI/ML-based Attack Detectors 

The goal is here to improve the robustness of the environment perception module through the use of 
AI/ML models to reduce the impact of the attack (e.g., denoising autoencoder [36]). 

Different AI/ML techniques will be investigated to Improve the robustness of the environment perception 
module and reduce the impact of the attack (e.g., denoising autoencoder [36]). 

To make Autonomous Vehicles less vulnerable to any attacker, it is necessary to develop adversarial 
robust ML/DL solutions. Adversarial training as shown in Figure 12 or input reconstruction, that 
adversarial samples will be cleaned to transform them back to legitimate ones will lead to more robust 
methods.  

 

Figure 12: Adversarial training 

Additionally, combining multiple defence strategies can clean some of the adversarial perturbations. 
Another solution would be to modify the whole ML/DL model and its parameters learned from the data, 
either using Network Distillation or Gradient Regularization. 

Various defences have been proposed to mitigate the effect of adversarial attacks. These defences can 

be grouped under three different approaches:  

● Modifying the training data to make the classifier more robust against attacks, e.g., adversarial 
training which augments the training data of the classifier with adversarial examples.  

● Modifying the training procedure of the classifier to reduce the magnitude of gradients, e.g., 
defensive distillation.  

● Attempting to remove the adversarial noise from the input samples based on the concept that 
correctly classified examples tend to have greater maximum SoftMax probabilities than 
erroneously classified and out-of-distribution examples 

A defence strategy which uses a WGANs is proposed in [50]. WGAN is trained on legitimate 

(unperturbed) training samples to “denoise” adversarial examples and combat both white-box and 

black-box adversarial attacks against classification networks. 

Besides the presented above cases which relies on the ML solutions developed using a single data 
source, there are possibilities to employ ML solutions leveraging multiple data sources. CARAMEL 
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considers these types of solutions important and in the following we will present a case where multi-
modal fusion is used for anomaly detection.  

Multi-sensor data fusion is the process of combining observations from a number of different sensors 
to provide a robust and complete description of an environment or process of interest. Data fusion finds 
wide application in many areas of autonomous vehicles such as object recognition, environment 
perception, road detection, etc. Current approaches for multiple tasks related to autonomous vehicles 
use either cameras, LIDAR, Radar or other sensors. Cameras can work at high framerates and provide 
dense information over a long range under good illumination and fair weather. However, being passive 
sensors, they are strongly affected by the level of illumination. A passive sensor is able to receive a 
specific amount of energy from the environment, light waves in the case of cameras, and transform it 
into a quantitative measure, such as an image. Clearly, the process depends on the amplitude and 
frequency of the light waves, influencing the overall result, while a reliable system should be invariant 
with respect to changes in illumination [38]. LIDARs sense the environment by using their own emitted 
pulses of laser light and therefore they are only marginally affected by the external lighting conditions. 
Furthermore, they provide accurate distance measurements. Based on this description of benefits and 
drawbacks of these two sensor types, it is easy to see that using multiple sensors might provide an 
improved overall reliability.  

Recently, a variety of 3D detectors that exploit multiple sensors have been proposed. A multi-task multi-
sensor detection model that jointly reasons about 2D and 3D object detection, ground estimation and 
depth completion has been proposed in [39]. Pointwise and ROI-wise feature fusion are applied to 
achieve full multi-sensor fusion, while multi-task learning provides additional map prior and geometric 
clues enabling better representation learning and denser feature fusion. Moreover, F-PointNet [40] uses 
a cascade approach to fuse multiple sensors. Specifically, 2D object detection is done first on images, 
3D frustums are then generated by projecting 2D detections to 3D and PointNet [41][42] is applied to 
regress the 3D position and shape of the bounding box. Furthermore, object localization from a frustum 
in LiDAR point cloud has difficulty dealing with occluded or far away objects as LiDAR observation can 
be very sparse. MV3D [43] generates 3D proposals from LiDAR features, and refines the detections 
with ROI feature fusion from LiDAR and image feature maps. AVOD [44] further extends ROI feature 
fusion to the proposal generation stage to improve the object proposal quality. However, ROI feature 
fusion happens only at high-level feature maps. Furthermore, it only fuses feature at selected object 
regions instead of dense locations on the feature map. To overcome this drawback, ContFuse [45] uses 
continuous convolution [46] to fuse multi-scale convolutional feature maps from each sensor, where the 
correspondence between image and bird’s eye vieW (BEV) spaces is achieved through projection of 
the LiDAR points. However, such fusion is limited when LiDAR points are very sparse. To address this 
issue, other methods predict dense depth from multi-sensor data, and use the predicted depth as 
pseudo LiDAR points to find dense correspondences between multi-sensor feature maps. 

It is clear enough that multi modal fusion in the field of autonomous vehicles is important for a robust 
and complete description of an environment to be provided. CARAMEL will focus on AI and multi modal 
fusion techniques in order to achieve the aforementioned task. To elaborator more on the solution below 
we will present some details about the generation of adversarial attacks and a deep learning (DL) 
solution for detecting attacks. 

For each AI/ML model the most appropriate data generation process and datasets will be selected from 
Table 9 and will be used for training. Following are the type of datasets that will be used to train the ML 
model: 

1. Real-world publicly available datasets 
2. Augmented datasets - Real dataset augmented with synthetic datasets 
3. A synthetic dataset will be constructed either from both a simulation environment as well as any 

available real-world data to capture different weather conditions, traffic, etc. 

2.5 Validation Methodology  

In this section we will explain the methodology that CARAMEL will use to validate the project outcome. 
In broad terms there will be two major paths: simulation and real-life demonstrations. In the following 
we will highlight why a simulation practice is needed and how it will complement the real-life 
demonstrations. Note: given the limited duration and resources, not all validation cases of CARAMEL 
will be carried out in field trials.  
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 Role of Simulation in the Autonomous Mobility Pillar   

The goal of CARAMEL is to demonstrate the use of AI/ML-based classification in an alarm system in 
the context of the automotive cybersecurity domain on the basis of dynamic system/sensor data and 
other suitable data streams around the vehicle’s communication patterns. This section explains the 
need for large amounts of data that are not available and/or generatable on a real-world basis in a 
context such as CARAMEL. For example, recording different weather conditions is out of scope and 
not reproducible. Therefore, as discussed in the beginning of this document the use of synthetic data is 
inevitable. The literature shows that models based on synthetic or hybrid data detect patterns in the real 
world. For this reason, CARAMEL will use synthetic data generated within a simulation tool in addition 
to freely available datasets and datasets captured by the sensor setup of the demo vehicle. The 
advantage of creating synthetic data is that, in contrast to freely available data sets, the obtained data 
can be adapted specifically to the application, i.e. sensor data from the real car are as “similar” as 
possible.  

 

Figure 13: Comparison of the physical and simulated process starting with the sensors up to the anti-
hacking device software (AHDS) 

 

 Comparison of Physical and Simulation Environment 

Figure 13 shows the process for the physical and the simulation environment. In the physical 
environment, sensors generate data, which is transferred to an intermediate, experimental data (if 
available) via a CAN-DataStream. The Car-PC is connected to the anti-hacking device. The anti-
hacking device AHD contains a docker container into which the anti-hacking device software AHDS is 
deployed. In the simulation environment, the entire pipeline is run on a computer. Sensor data is 
generated in the simulation tool. The docker container and the software of the AHD receive the 
generated data. From the moment the data reaches the docker container, the simulation and physical 
execution in a real car are identical. The anti-hacking software cannot distinguish between physical and 
simulated data and can therefore be exchanged between the environments. 
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Figure 14: Simulation environment workflow and AHDS deployment in physical environment 

 

 Use of Simulation Framework within Pillar 1 

Figure 14 shows a workflow within and around the simulation framework. There are three major cycles.  
First the basic cycle for adjusting the basic settings. Here, data is collected in a pool consisting of limited 
real-world data and synthetic data generated in the simulation tool. Furthermore, hack simulations 
generated via ML are collected. The data is mixed and multiplied. Based on the collected data use-case 
specific data sets are compiled and used as training data for training ML models. The training data can 
consist of real, synthetic or hybrid data. CARAMEL trains different ML-models, on the one hand models 
for generating hacks, where the generated data are collected in the data pool and, on the other hand, 
models for the detection of anomalies. The latter model is introduced in the second cycle, the Software-
in-the-Loop cycle. Within the cycle, synthetic data can be adapted and remixed and duplicated. 
Datasets can be compiled in a use case- and scenario- specific manner, and the hyperparameters of 
the neural networks can be modified. The second cycle extends the basic cycle, where the trained 
anomaly detection model corresponds to the AHDS and is tested in the simulation environment. If the 
model does not deliver satisfactory results, the parameters mentioned above are adjusted again on the 
basis of the evaluation. If the test delivers satisfactory results, the AHDS is transferred to the third cycle 
and tested in the physical environment. Depending on the result, the mentioned parameters are 
adjusted again. 
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Figure 15: Data generation acceleration and diversity increase by creating individual functions within the 
simulation tool 

 Simulation Tool 

With the technological advancements in the field of graphic engines, the simulation of scenarios with 
static objects such as traffic signs, semaphores, benches, buildings, etc. all of them with high quality 
textures has become possible. Additionally, having dynamic objects deployed in the simulated world is 
feasible. For example, cars, trucks, bicycles, pedestrians or moving objects can be simulated with 
shapes very similar to the shapes of its counterpart in the real world. It has to be possible to extend the 
simulation environment with the specific functions shown in Figure 15. For example, diversity can be 
increased by creating random stickers on street signs, varying street sign orientations by changing 
backgrounds and weather conditions. Further additions can be scenario specific trajectories and 
(random) variations within trajectories. By automatically combining and executing the above functions, 
many complex scenarios can be generated automatically. 

Different simulation tools have been developed to support such simulated worlds, some are open 
source e.g. CARLA simulator [37], Microsoft AirSim [51], while others are from private companies e.g. 
AVL [52] and Automotive AI [53]. They were developed to facilitate easy deployment of artificial neural 
networks in industrial applications. The following uses CARLA as an example. This tool can be extended 
by specific functions as shown in Figure 15, thus simplifying data generation. A highlight of CARLA is 
the possibility to collect data from sensors attached to specific locations on the vehicle. CARLA allows 
the specification of sensor properties within certain limits. Table 10 shows configurable parameters of 
some sensors. 
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Sensor 
(arbitrarily many) 

Configurable Parameters 

RGB Position, resolution, gamma, field of view, aperture, shutter speed, iso, 
extrinsic parameters 

RGBD Position, resolution, field of view, lens distortion. 

Lidar Position, range, refresh rate, field of view. 

Table 10: Some sensors included in CARLA and their configurable parameters 

As we now understand why and how the simulation tool would be used in CARAMEL, let’s focus on the 
scenarios explained under pillar 1 and map them into the simulation activities and/or real-life 
demonstrations.  

The validation of the physical adversarial attack will be carried out as follows. First, we assume that the 
goal of the attacker is not to completely fail the detection-based system but to mislead the detection 
model to detect the other signs. For example, an attack on the physical stop signs using advanced 
neural network can mislead detection-base model detecting signs as no stop signs. Based on that, the 
validation and demonstration of the use case will be performed in both real and simulation 
environments. Metrics related to the detection and recognition accuracy such as F1 score, Precision 
and Recall will be considered. 
 
  

Physical Adversarial Attack Demonstration Type 

Real Simulation 

Anomaly detection in traffic sign To be confirmed Yes 

Robust network for pre-processing No Yes 

  Table 11: Validation methods of Physical Adversarial Attack 

The attack on the camera images will be demonstrated in a real-use case where an environmental 
element (e.g., parking mark) will be hidden/appear based on the attack. The specific element will be 
decided based upon the availability of data and sensor input. As mentioned above, these data could 
either come from:  

• Driving simulator,  

• Real data (video captures)  

• Augmented  
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Each collected data element is being provided with a timestamp. Detection techniques will mainly be 
based on the co-registration and processing of data from multiple sources located at different strategic 
points on the vehicle. If the previous module detects something suspicious, then an alert could be raised 
in order to forewarn the user of a possible attack. By implementing some filtering techniques, we could 
mitigate the attack in order to recover the malicious data and let the system decide again. 

Apart from the real-use case scenario, we are also going to implement an adversarial attack using a 
simulator e.g. CARLA. The purpose of the aforementioned attack is to add a perturbation to the input 
data that can result in an error in the output of a trained model. We aim to develop adversarial robust 
ML/DL solutions in order to make Autonomous Vehicles less vulnerable to any attacker. 

Table 12 summarizes the validation activities related to the attack on camera sensor scenario.  

Attack on Camera Sensor Scenario Demonstration Type 

Real Simulation 

Detection and Mitigation of attack on 
Camera Sensor with multimodal 
fusion: An environment element (e.g., 
parking mark) will be hidden/appear. 

Yes Yes 

Table 12: Validation methods of Attack on Camera Sensor 

2.6 Use of the Anti-Hacking Platform 

In the Panasonic autonomous car sensor data is transported over the CAN bus. The anti-hacking 
device, using its CAN bus interface, can intercept this traffic, extract the raw sensor data, and can 
analyse the data using pre-trained TensorFlow Lite models to detect possible attacks on the sensor. 

Figure 16 shows how in the training phase sensor data is collected from sensors in the car. The sensor 
data must be classified appropriately to create training data for the ML environment. In the ML 
environment data scientists create models for attack and threat detection. 

In order to deploy the finished models to the anti-hacking device (lower part of the diagram), the models 
must be converted to the TensorFlow Lite format supported by the ML TPU in the anti-hacking device. 

Finally, there will be real-world testing, where the anti-hacking device in the car actually listens to the 
raw data on the CAN bus and uses the TensorFlow Lite model to detect attacks on the sensors. 

Figure 17 shows how the anti-hacking device is integrated with the autonomous vehicle. There are 
basically be two interface between the car and the anti-hacking device: The first interface is the CAN 
bus, the other interface (yet to be defined in detail) is the interface to a visualization component in the 
car that indicates the attack situation (or the normal, non-attack mode) to the driver of the car.   

Figure 18 shows how the anti-hacking device (target hardware or virtualized machine-based anti-
hacking with Coral USB Accelerator) can be integrated into the development and simulation workflow. 
The main difference is that, instead of the real car with real sensors, the CARLA simulation environment 
will be used to simulate the car and its sensors. Since there is no CAN bus, the connection between 
simulation environment and anti-hacking device will be implemented using high-level REST-based 
interfaces. The ML software running on the anti-hacking device (in the form of a dockerized ML app) 
will be the same as for the real car case. 

 

 

 



CARAMEL (No. 833611) D2.1 March 2020 

Page 43 of 117 
 

 

 

Figure 16: From Training to Deployment in the Autonomous Car 

 

 

Figure 17: Integration of anti-hacking device with autonomous vehicle 
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Figure 18: Training and validation in the simulation environment 

2.7 Functional Requirements  

In a high-level perspective, the following workflow has to be carried out in the CARAMEL scenarios.  

• Receive input from the car sensors 

• Receive input from streamed data 

• Apply attack detection ML algorithms 

• Apply ML algorithms to overcome attacks (robust models) 

• Push notifications  

The functional requirements of the CARAMEL system are presented below. The requirements ID, 
name, and description are given. Furthermore, each requirement is linked with other sources of the 
CARAMEL project, such as user, security and privacy requirements 
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Definition - Description The CARAMEL platform must be able to generate synthetic data from a 
selected simulation tool.  

Target WP 4 

Priority Mandatory 

How addressed The CARAMEL platform will provide an asset and data management 
environment. Accordingly, the simulator will support different traffic 
signs, weather conditions, and locations.  

 

Reg ID CRPL1-FR02 

Title Anomaly detection of Traffic Signs 

Definition - Description The CARAMEL platform must be able to identify the anomaly in traffic 
signs. 

Target WP 4 

Priority Mandatory 

How addressed The CARAMEL platform will provide ML models to detect anomalies in 
traffic signs in various scenarios. 

 

Reg ID CRPL1-FR03 

Title Reconstruction of attacked Traffic Signs 

Definition - Description The CARAMEL platform must be able to reconstruct the appropriate 
traffic signs when attacks are present.  

Target WP 4 

Priority Mandatory 

How addressed The CARAMEL platform will provide ML models to filter and reconstruct 
the signs.  

 

Reg ID CRPL1-FR04 

Title Anomaly detection on Lane/Parking Markings 

Definition - Description The CARAMEL platform must be able to detect adversarial attacks 
resembling appearance perturbations on structural scene elements e.g: 
Parking/Lane Markings. 

Target WP 4 

Priority Mandatory 

How addressed The CARAMEL platform will provide a Learning Module aiming at 
detecting anomalies in Lane/Parking Markings. 
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Reg ID CRPL1-FR05 

Title Reconstruction of adversarial attacks on Lane/Parking Markings 

Definition - Description The CARAMEL platform must be able to detect adversarial attacks 
resembling appearance perturbations on structural scene elements e.g: 
Parking/Lane Markings. 

Target WP 4 

Priority Mandatory 

How addressed The CARAMEL platform will provide a Learning Module aiming at 
detecting anomalies in Lane/Parking Markings. 

 

Reg ID CRPL1-FR06 

Title Detection of Attacks on Camera Sensor based on Multi-model Fusion 

Definition - Description The CARAMEL platform will be able to detect attacks on the camera 
sensor by cross-referencing the perception output with the LiDAR 
output. 

Target WP 4 

Priority Mandatory 

How The CARAMEL platform will provide ML models to detect any 
discrepancies between LiDAR and image detections. 

 

Req ID CRPL1-FR07 

Title Mitigate effect of attack 

Definition - Description The CARAMEL platform will be able to mitigate the attacks on the 
camera sensor by signalling a warning alarm. Further, it will attempt to 
improve the image quality to mitigate the effects of the attack if possible. 

Target WP 4 

Priority Mandatory 

How Once an attack has been detected the system will display a warning on 
the HMI with the error message that the driving environment has been 
compromised. It will also attempt through the use of generative models 
to reduce the effect of the attack on the image. 
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3 Pillar 2 – Connected Mobility 

3.1 Context 

Nowadays vehicles are provided with three different kind of communication systems: 

• Communications inside the vehicle: these are communications between the different parts of 
the vehicle itself. Mechanic and electronic components of the vehicle as injectors, brakes, 
gears, the control system etc. interchange data through the CAN bus or the automotive 
Ethernet. 

• Communication of the infotainment system: users are able to consume multimedia content 
through the display or vehicle's speakers, maintain voice calls or access Internet content. 
Different kinds of network technologies are used for this purpose: IEEE 802.11, Bluetooth, 
cellular networks, USB connectors. 

• V2X Communications: The so called V2X (Vehicle-to-Everything) communications enable 
vehicles to communicate with the road infrastructure and other road users (vehicles, scooters, 
bikes, or pedestrians) and to have a more accurate knowledge of their surrounding environment 
that can improve the traffic safety and provide new Intelligent Transport Services (ITS). 
European Telecommunications Standards Institute (ETSI) ITS-G5 suite in Europe and the 
Wireless Access in Vehicular Environments (WAVE) in the US define all standards and 
protocols to provide numerous ITSs. 

Among these types of vehicle communications, CARAMEL Pillar 2 will address the functional, security 
and privacy issues of the V2X Communications to provide a secure environment for ITS applications. 
This technology is relatively new and the security issues are not yet completely studied, therefore works 
on this area are necessary and this project will focus part of the efforts on them: 

1. The first requirement is to provide the necessary infrastructure for interoperability of radio 
communications bearing in mind that there are two different candidates for the radio technology, 
as discussed in Section 3.3.  

2. The second addressed issue is the provision of a complete system that enables to verify the 
authenticity of the transmitted messages through a Public Key Infrastructure (PKI) that 
distributes and revokes certificates.  

3. The third objective is to develop an anti-tamper Hardware Security Module (HSM) to store these 
certificates in the vehicle.  

4. Next, as most ITS messages rely on the geographic position of the vehicles, CARAMEL has to 
ensure that vehicle's position information is trustful and reliable. For this reason, a location 
spoofing attack detection system will be developed.  

5. Finally, the fifth objective is to provide a system that enforces vehicles privacy through 
appropriately choosing the instants in which vehicles should change the certificate used to sign 
their packets to prevent being tracked. 

In line with these objectives, below we list the main open issues in terms of security and privacy that 
will be examined through the use case discussed in this section:  

• Different radio technologies for V2X communications 

• Authentication of messages through a Public Key Infrastructure 

• Storage of cryptographic material in the vehicle through a Hardware Security Module 

• Vehicle location spoofing 

• Vehicle tracking using its signature certificates 

The use case presented here is revolving around the connected mobility pillar, but it also enhances the 
autonomous mobility domain discussed in the previous section, as it enables vehicles to communicate 
with their surrounding environment (emergency calling, data mining, remote services, entertainment 
data, geo positioning, etc.).  

An overview of potential attack surfaces of the connected mobility pillar in shown in Figure 19. 
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Figure 19: Overview of the attack surface of the Connected Mobility Use Case 

For the cooperative and connected mobility domain, amongst the top priorities is to ensure the integrity 
and authenticity of the exchanged information. Some of the most important security threats of this 
domain are described in Table 13.  

Description 

1. Attacks on backend server. An attacker can compromise a backend server and use it to 
attack the connected cars. An attacker may launch a DoS attack on backend servers to 
disrupt their services. An attacker may target sensitive data at the server or information in 
other parts of the cloud. For example, mobile apps are used to allow a user to query the 
status and control the car from his/her smartphone. Insecure APIs at the backend allow an 
attacker to interact with the car using falsified API requests.   

2. Attacking a car using V2X communication channels. An attacker may spoof V2X 
messages, tamper with transmitted data or code, attack data integrity, exploit the trust 
relation, gain unauthorized access to data, jam the communication channel on the protocol 
or RF level and inject malware or malicious V2X messages. For example, non-secure 
protocols such as HTTP are sometimes used for V2X communications. Even when TLS/SSL 
is used, if the client software does not properly check the server certificate, an attacker can 
launch a Man-in-the-Middle attack to steal the user's credentials to further control the car.   

3. Attacking a car by exploiting software update. An attacker may compromise the Over-
the-Air (OTA) updates or local and physical software update process, manipulate the 
software before the update process, or even steal cryptographic keys to compromise code 
signing. For example, the 2014 Jeep Cherokee was remotely hacked by updating the 
Renesas V850 firmware to allow the compromised telematics unit to send messages directly 
to the ECUs on the CAN bus.   

4. Social engineering exploits vulnerabilities and weaknesses introduced by human 
errors. An attacker may trick an owner, operator, or maintenance engineer to unintentionally 
install malware or change the setting to enable an attack. An attacker may also exploit errors 
in system configuration or usage.   
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5. Attacking vehicle interfaces and functions for external connectivity. An attacker may 
access and manipulate functions designed to remotely operate systems or provide telematics 
data, short range wireless systems and sensors, and applications with poor software security. 
An attacker may also utilize physical interfaces such as USB or diagnostic port, or even 
media connected to the car as a point of attack. For example, connected cars rely on network 
devices with TCP/UDP ports to interact with the outside world. Even the IP address of a 
connected car is protected by network separation provided by network operator, open ports 
and services with weak or no authentication pose security risks. An attacker can remotely 
scan and access the open ports and exploit the services as an entry point to the on-board 
system. In addition, the CAN bus can be accessed physically through the OBD port, charging 
station, or a mechanic's computer.   

6. Attacks on in-vehicle network or software of on-board systems. An attacker may extract 
data and code, manipulate vehicle data, erase data and code, inject malware, inject or 
overwrite existing software, disrupt system operation, and manipulate vehicle parameters.   

7. Attacks that exploit security flaws in system design. An attacker may break the 
encryption due to insecure cryptographic design such as lack of encryption, weak key 
strength, or the use of deprecated cryptographic algorithms. Bugs in software and hardware 
may provide the attacker exploitable vulnerabilities and means of access or privilege 
escalation. Poor network design such as weakness in internet-facing ports and internal 
network separation also pose security risks. Crypto systems in the car should last for a long 
period of time. Lack of crypto-agility, i.e. not being able to upgrade broken or obsolete 
cryptographic systems over time, may affect the whole security status.   

8. Attacks on privacy or data loss and leakage. V2X communication packets may contain 
identifiable information. Some of the information may be anonymized or pseudonymized. 
However, an attacker may still be able to intercept the V2X packets, footprint and track a 
car's movement over a certain period and area and re-identify the user. Personal data may 
be transferred to third-party service providers in V2X communications. Sensitive data from 
cars may be lost or leaked due to physical damage, failure of IT components, or change of 
ownership.   

9. Physical manipulation of on-board systems to enable an attack. Manipulation of OEM 
hardware or adding unauthorized devices may enable a remote attack afterwards.   

Table 13: Overview of attacks in the connected mobility domain 

The scenarios targeted by the project are based on the CARAMEL consortium knowledge, available 
resources and showcasing capacity.      We will examine three main attacks: 

● Geolocation attacks: using a type of man-in-the-middle attack called “location spoofing” 
attack.   

● V2X message attacks: man-in-the-middle attack and vehicle bus (through radio interface) 
attack. 

● OBU Tampering attack: attack on key certificates storage, malicious firmware update, 
attack on exploiting OSS vulnerabilities. 

 

Those three attack scenarios are shown in Figure 20 (a burglar icon is placed where the vulnerability 
intended to be attacked is shown).  
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Figure 20: Attack scenarios contemplated in the connected mobility pillar 

3.2 Scenarios Description 

Keeping in mind the threats discussed above, a set of relevant scenarios, which are also feasible in 
terms of timing and budget, have been identified for Pillar 2, presented in Table 14. 

 

No. Scenario Name Short Description 

1. Location Spoofing Attack 

The attacker is able to jam the satellite signals and the 
connected car does not have satellite-based location (e.g., 
GNSS/RTK). 
 
The attacker is able to spoof the satellite-based location of 
the connected car. 
 
CARAMEL system aims to detect the jamming and 
location spoofing attack. 

2. 
Attack on the V2X message 
transmission 

A malicious attacker transmits fake CAM and DENM 
messages or tries to track a specific vehicle. 
 
A malicious attacker tries to track a vehicle though the 
digital certificate used to sign transmitted messages. 

3. 
Tamper attack of vehicle’s 
OBU 

The attacker is able to tamper an OBU physically by 
accessing the vehicle. 

The attacker could have acquired another OBU (e.g. 
aftermarket sample) in order to study its vulnerability 
beforehand. 

Table 14: Overview of scenarios to be examined in Pillar 2 

 Location Spoofing Attack 

A location spoofing attack attempts to deceive a GNSS/RTK receiver by broadcasting incorrect satellite 
signals, structured to resemble a set of normal satellite signals (e.g., GPS, GLONASS, GALILEO, etc.). 
These spoofed signals may be modified in such a way as to cause the receiver to estimate its location 
to be somewhere other than where it actually is. One common form of a location spoofing attack begins 
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by broadcasting signals synchronized with the genuine signals observed by the target receiver. The 
power of the counterfeit signals is then gradually increased and drawn away from the genuine signals.  

This type of attack has already been successfully carried out in several scenarios, i.e., against boats or 
Unmanned Aerial Vehicles (UAVs) in references like [55][56]. Following such philosophy, in CARAMEL, 
the attack is carried out thanks to fake satellite signals transmitted by Software Defined Radio (SDR) 
hardware. Figure 21 shows a possible implementation where a UAV (e.g., commercial-grade drone) is 
used for transmitting counterfeit signals. Other candidate implementations for demonstration include 
static transmitters carried by the attacker covering a specific target area, e.g., a crossroad. 

 

 

Figure 21: A possible implementation for the location spoofing attack 

 

For this attack, the CARAMEL system will be able to detect when the satellite signals are spoofed 
thanks to a parallel stream of vehicle locations that does not rely on satellite signals, but rather in-car 
measurements readily available through the vehicle’s CAN bus, which we call hereinafter the 
CARAMEL secondary location stream. Such secondary location stream is based on a Bayesian filtering 
technique, which consists of two basic steps: (i) the prediction step and (ii) the update step. With 
Bayesian filtering, the motion of the vehicle is described through the characterization of the underlying 
physical laws, e.g., with a bicycle model, and the prediction on the future vehicle locations is obtained 
through on-board sensors, e.g., with the Inertial Measurement Unit (IMU) readings. In the update step, 
the forecasted vehicle locations are then fused with satellite-free global location measurements. 

In order to detect the location spoofing attack, in CARAMEL, the secondary location stream will be 
compared with the obtained satellite-based locations. When the difference between the two sets of 
location measurements exceeds a predefined threshold, an alarm will be raised, and the location 
spoofing attack will be detected. The alarm will be communicated through the CARAMEL connectivity 
infrastructure to the PKI infrastructure, which then will take appropriate countermeasures, e.g., revokes 
the certificate of the attacked vehicle. 

The secondary location stream will be computed by an application within a container on the anti-hacking 
device in the CARAMEL system, which will be installed inside the vehicle. Such an application will 
retrieve information regarding on-board sensor readings from the CAN bus and will fuse such 
information with satellite-free global positioning measurements thanks to a Bayesian filtering technique. 
An attack will be identified, and an alarm will be triggered, by comparing the coherence of the obtained 
secondary location stream with the location information obtained by the satellite receiver (Figure 22). 
To this end, the system will take the secondary location stream as the ground truth and will exploit the 
knowledge of its error’s covariance to validate the satellite-based location. If the probability of the 
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measured distance between the averages of the two multivariate distributions is above a given pre-
defined threshold, an alarm will be raised, i.e., a location spoofing attack will be detected. 

Notably, the solution adopted by the CARAMEL system is modular, and each block could be modified 
based on the available on-board sensors and on the available satellite-free global positioning 
measurements. As an example, the vehicle state model could be defined depending on the most 
accurate sensors present in the vehicle or on the sensors leading to the most accurate location 
predictions. In the same way, any satellite-free Global Positioning Measurement could be used, as far 
as it is possible to determine its error covariance matrix. 

 

 

 

Figure 22: Block Diagram of the satellite-based location integrity check application 

 

 Attack on the V2X Message Transmission 

This scenario deals with the security of V2X message transmission. It will be used to test the PKI 
architecture, the certificate distribution model and the signing functions of the transmitted messages. 

Additionally, as V2X messages are transmitted digitally signed, an important aspect is to preserve 
privacy. This is achieved using pseudonyms instead of real identifiers for the continuous message 
transmission. Standards recommend changing pseudonyms at given intervals. However, knowing the 
position of vehicles and the interval used in pseudonym renewal, tracking by an attacker becomes trivial.  

The common solution to improve privacy is to randomise the moments when pseudonyms are renewed 
and, optionally, insert silence periods of a few seconds. However, the naive insertion of these silence 
periods may affect the performance of safety applications. The authors in [57] propose a set of 
pseudonym renewal randomisation strategies using IEEE 802.11p radios, and study how these 
strategies impact the success rate of an intersection collision detection application. In CARAMEL, we 
plan to further extend these strategies proposing an algorithm based on Machine Learning to optimize 
the moments when the pseudonyms are renewed. 

The scenario comprises four test cases where the security in communication functionalities of the OBU 
will be tested and analysed. In particular, CARAMEL will deploy: 

• Test case 1: The attacker is a fake vehicle that generates messages with some invalid data. 

• Test case 2: The attacker is a fake vehicle that sniffs and replays messages of compliant 
vehicles. 

• Test case 3: The attacker is a compliant vehicle but supplanting identity (example: a normal 
vehicle sends information as an ambulance). 
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• Test case 4: The attacker is a vehicle trying to track another one which changes the AT using 
the proposed changing algorithm. 

In all cases, the receiving vehicle will need to check the authenticity of the incoming messages and 
discard the non-compliant ones (fakes or not authorized). 

To test this scenario the following elements of the architecture will be involved: 

• The PKI will be used to authenticate/authorise vehicles and distribute Authorization Tickets (AT) 
to the OBUs, to be able to sign their own V2X messages. 

• 3 types of OBUs: One receiver OBU, one transmitting compliant OBU and one attacker OBU. 

• MEC (Multi-access edge computing): In the case where V2X messages are transmitted V2V, 
the receiving OBU will be in charge of detecting non-compliant messages. Nevertheless, in the 
case where messages need to be relayed using the infrastructure (in order to interoperate 
different radio technologies or to forward messages to other geographic areas), the MEC, 
before forwarding the message, will check its authenticity and will discard messages from the 
attacker. 

• Anti-Hacking device: To compute the moment in which an OBU should change the 
pseudonymous certificate. 

 Tamper Attack of Vehicle’s OBU  

This scenario reflects the fact that even though a network vector attack can be more impactful than a 
physical attack, directed attacks to a given physical unit of a vehicle are also potentially dangerous. 
Such attacks can be directed towards a specific target negatively impacting its privacy and security 
while also indirectly impacting its safety.   

There are three techniques, at the OBU level, which can be used to enhance the level of security, as 
depicted in Figure 23 .  

 

Figure 23: Security techniques at the OBU level  

Hardware (HW) tampering refers to any means through which the components itself can be 
manipulated. The severity of the tampering can range from just naive manipulation such as breaking a 
seal to dangerous manipulation resulting in accessing privileged information. Secure boot is a technique 
which prevents non-authorised software (SW) to be executed. This technique aims to prevent tampering 
through malicious software execution. Sandboxing provides an additional level of security which can 
prevent vulnerabilities in authenticated software to be exploited. Every application is executed in its 
predefined and isolated sandbox environment where it cannot interact or affect the execution of other 
applications. This mainly prevents ROP attacks. 
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In the context of CARAMEL, the main R&D development will be focused on HW techniques to detect 
and prevent tampering. Nonetheless, secure boot and sandboxing approaches will be implemented as 
well. 

Since the OBU is the gateway to the vehicle’s network communications, its protection should be the top 
priority so as to prevent it from becoming the weakest link in the vehicle’s security chain.   

In order to do so, it is necessary to consider splitting the OBU’s complexity in several layers and applying 
a different security approach per layer, according to its specific needs.  

There are five (plus one) layers to be considered, as illustrated in Figure 24:   

• Hardware layer: all HW techniques to prevent HW tampering. This includes, but not limited to, 
HSM module. 

• Hypervisor: SW layer which commonly provides an abstraction of the OS. 

• OS Control Access 

• Network protection 

• Application Sandboxing 

• OTA update ability 

 

 

Figure 24: The layered architecture of OBU security  

 

The characteristics of an OBU tampering attack are listed in Table 15. 

  

Execution Steps • The attacker gets hands-on access and 
opens the enclosure of the OBU. (OBU is 
disconnected)  

• OBU detects tampering and triggers anti-
tampering mechanism:  
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o OBU triggers mechanism to enter in 
secure-state 

o Confidential information is protected 
against tampering 

Data Flow • OBU detects tampering signal 

• Tampering signal triggers secure-state 
actions 

o Zeroisation of private keys  
o Zeroisation of any other confidential 

data 

• OBU enters secure state  

• In this secure state the system will inform the 
PKI server, through any channel available, to 
revoke the certificates. 

Assumptions • The malicious attacker has studied the OBU 
(e.g. has obtained some pictures, diagrams 
and knows where the SE is placed. 

• OBU is disconnected from main supply 

• Every OBU has unique secure set of private 
keys  

Table 15: OBU Tampering Attack characteristics 

3.3 Enabling Infrastructure and Overview of Cyberattacks 

In this section we will refer first to the type of malicious attacker we are envisioning for the kind of attacks 
that we will protect in CARAMEL. Note that the attacker is also present in the other use cases addressed 
by the project, but in the Connected Mobility scenarios it gains a more active role. Table 16 presents 
the different types of malicious attackers.  

Type of Malicious 
Attacker 

Short Description 

Cyber Criminals Individual or teams of people who use technology to commit malicious 
activities on digital systems or networks with the intention of stealing 
sensitive company information or personal data, and generating profit 

Hacktivists  Hacktivists are individuals or groups of hackers who carry out malicious 
activity to promote a political agenda, religious belief, or social ideology. 
According to Dan Lohrmann, chief security officer for Security Mentor, 
a national security training firm that works with states said "Hacktivism 
is a digital disobedience. It's hacking for a cause." Hacktivists are not 
like cybercriminals who hack computer networks to steal data for the 
cash. They are individuals or groups of hackers who work together and 
see themselves as fighting injustice 

State sponsored attackers State-sponsored attackers have particular objectives aligned with either 
the political, commercial or military interests of their country of origin. 
These types of attackers are not in a hurry. The government 
organizations have highly skilled hackers and specialize in detecting 
vulnerabilities and exploiting these before the holes are patched. It is 
very challenging to defeat these attackers due to the vast resources at 
their disposal. 

Insider Threats  The insider threat is a threat to an organization's security or data that 
comes from within. These types of threats and attacks are usually 
committed by employees or former employees, but may also arise from 
third parties, including contractors, temporary workers, employees or 
customers. 
Insider threats can be further categorized into the following:  
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o Malicious threats are attempts by an insider to access and 
potentially harm an organization's data, systems or IT 
infrastructure. These insider threats are often attributed to 
dissatisfied employees or ex-employees who believe that the 
organization was doing something wrong with them in some 
way, and they feel justified in seeking revenge. Insiders may 
also become threats when they are disguised by malicious 
outsiders, either through financial incentives or extortion 

o Accidental threats are threats which are accidentally done by 

insider employees. In this type of threats, an employee might 
accidentally delete an important file or inadvertently share 
confidential data with a business partner going beyond 
company’s policy or legal requirements 

o Negligent threats are threats in which employees try to avoid 
the policies of an organization put in place to protect endpoints 
and valuable data. For example, if the organization has strict 
policies for external file sharing, employees might try to share 
work on public cloud applications so that they can work at 
home. There is nothing intentionally wrong with these acts, but 
they can open up to dangerous threats nonetheless. 

Table 16: Overview of Malicious Attacker types 

 

The infrastructure required for the deployment of the Connected Mobility use case consists of the 
building blocks presented in Table 17.  

 

Component  Short Description 

Malicious attacker 
 

Any type of actor that can negatively impact the vehicle or other relevant 
infrastructure. See Table 16 for further descriptions of malicious attackers. 

Cooperative car 
 

V2X-enabled communications car. It is capable of communicating with 
other cars and infrastructure relevant data such as position, speed, etc. 
and detect security attacks. 

It is composed of: 

• OBU. 

• Anti-Hacking device. 

Fixed infrastructure 
 

Consisting of: 

• eNB: C-V2X base station. 

• RSU: IEEE 802.11p fixed station. 

• PKI servers. 

• MEC. 

It has to provide: 
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• Multi-Technology V2X Communications interoperability: It is 
foreseen that there will be vehicles and users communicating with 
different radio technologies. The infrastructure needs to perform 
the correspondent actions to enable that all messages get to all 
required destinations. 

• Distribution of Revoked Certificates Lists in real time: Certificate 
revocation is the consequence of any misbehaviour or malicious 
act detection. Whenever the anti-hacking device deployed in the 
vehicle or any other application executed in the fixed infrastructure 
detect a fraudulent or misbehaving action performed by a vehicle, 
the system will decide if this vehicle has to have its certificates 
revoked. If affirmative, a new process to inform about this fact to 
other vehicles in the system has to be deployed. In particular, the 
infrastructure has to provide a mechanism to distribute Revoked 
Certificates Lists in real time to the rest of vehicles of the system. 

 
Outside Infrastructure 

• Public parking 

• Workshop  

• Private parking  

Table 17: Overview of building blocks for the Connected Mobility pillar 

 Cooperative Cars 

Standard cooperative cars are equipped with an OBU (On-Board Unit) which provides all secure 
communications functionalities. The objective of CARAMEL is to develop a completely functional OBU 
that complies with current security regulations, plus an “Anti-Hacking Device”, which runs processes 
able to detect hacking attempts and functional misbehaviours using Machine Learning algorithms and 
techniques (Figure 25). The Anti-Hacking device is used to counter attacks in the “Location Spoofing 
Attack” scenario, focusing on the vehicle's satellite-based location service. 

Figure 25: Cooperative car equipment overview  

In the Secure multi-technology OBU architecture, we can distinguish the following main elements:  

• Hardware Security Module (HSM): 

One of the possible attack vectors to V2X infrastructure is to steal sensitive data or cryptographic keys 
from the vehicle’s OBUs. In order to counter this attack, trustworthy, unforgeable, and non-copyable 
identities must be established for the V2X communication partners. One way to achieve this goal is to 
integrate a Hardware Security Module (HSM) into the OBU that serves as a repository for private key 
data (for authentication and encryption purposes) as well as a cryptographic processor for sensitive 
operations. This fully secured hardware platform requires additional protection at different stages of the 
device’s operation: i) booting only secure firmware that is known to be obtained by a trusted source, ii) 
resilience against hardware modification, iii) resilience against software modification (after booting the 
trusted firmware), and iv) additional protection of sensitive assets at runtime. 
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The HSM is the component used for preventing and countering attacks of the “Tamper Attack on 
Vehicle’s OBU” scenario. 

• Radio interfaces (IEEE 802.11p and LTE-Uu): 

All vehicles require to connect to the PKI servers in order to obtain the pseudonymous authorization 
tickets before being able to transmit ITS messages. Although it is possible to download these tickets 
once every several days in different places (home through a Wi-Fi connection, petrol stations, 
mechanical garages, ...) the most common situation is when the vehicle has a cellular interface to 
connect itself to the fixed network. The technology of this interface will evolve as cellular networks 
evolve. Therefore, as for CARAMEL’s deployment, LTE-Uu is going to be used, but it can be extended 
to 5G NR, or 6G in a near future. 

Additionally, and in order to reduce latency during ITS message transmission between vehicles, direct 
V2V connections are preferred than V2I. V2V connections can be performed using IEEE 802.11p or 
LTE-PC5 radio technologies but, nowadays, IEEE 802.11p is much more commercially available. 
Consequently, in CARAMEL project we will use IEEE 802.11p for V2V connections. Lastly, we consider 
that a real road scenario contains two types of cars, those that are able to perform V2V connections 
(they have two radio interfaces: LTE-Uu and 802.11p), and those that are only able to connect to the 
fixed network (they have a single radio interface: LTE-Uu). 

Currently there is not a clear radio technology to be used for V2X communications. Up to now, IEEE 
802.11p has been the de facto wireless technology standard for V2X communications. It is a relatively 
mature technology and has already been validated by over a decade of field trials. Despite that, IEEE 
802.11p, which uses Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA), suffers from 
a high level of collisions under heavy traffic conditions, mainly due to hidden terminal situations.  

Long-Term Evolution (LTE) based V2X from the Third Generation Partnership Project (3GPP) is a 
relatively new alternative to IEEE 802.11p-based V2X communications. The first version of LTE-V2X, 
also known as Cellular-V2X (C-V2X), was published in June 2017 under Release 14, which came with 
numerous enhancements to the existing Device-to-Device (D2D) communications in order to 
accommodate vehicular communications. The proposed enhancements include a new arrangement of 
the resource grid of the physical layer and two types of D2D channel access mechanisms: i) a 
mechanism coordinated by the evolved NodeB (eNB), named Mode 3, and ii) a distributed mechanism, 
where User Equipments (UEs) access the channel on their own, named Mode 4. Moreover, LTE-V2X 
employs different radio interfaces: i) interface between the vehicle and eNB, named LTE-Uu, and ii) 
interface between vehicles, named LTE-PC5. 

Current specifications state that IEEE 802.11p and LTE-PC5 communications take place in one channel 
inside the unlicensed frequency band 5855 MHz - 5925 MHz named ITS-G5, while LTE-Uu uses part 
of the licenced spectrum assigned to the operator that owns the eNB. 

Major Original Equipment Manufacturers (OEMs) are starting to roll out V2X capabilities, but there is 
not yet an industry-wide consensus about the best communications technology. In this regard, 
Volkswagen begins to manufacture a new 2020 Golf equipped with the system Car2X which uses the 
more mature 802.11p radios. Preliminary V2X services including the continuous dissemination of a 
vehicle position and speed, through the use of ETSI-G5 Cooperative Awareness Messages (CAM), or 
the notification of road events through the use of ETSI-G5 Decentralisation Event Notification Messages 
(DENM), have been demonstrated, using IEEE 802.11p, in various EU funded projects including DRIVE 
C2X, C-ROADs or PRESERVE. However, other OEMs supported by telecom operators and vendors, 
have gathered around the 5GAA to promote the adoption of the C-V2X. 

At present, both the IEEE and the 3GPP, continue to enhance their support for vehicular 
communications. The IEEE recently launched the 802.11bd working group, which will update the 
physical layer of 802.11p to the one used in 802.11ac (Very High Throughput), while adding 
enhancements for high mobility (500 km/h), support for 60 GHz operation, and longer range (double 
than 802.11p) [54]. However, in order to maintain backwards compatibility, 802.11bd reuses the same 
channel access mechanisms than 802.11p. On the other hand, the 3GPP is currently defining in 
Release 16 C-V2X extensions for the 5G-New Radio technology, known as NR-V2X. This technology 
though does not target day-1 safety services in the ITS -G5 band, will focus on value added services 
using licensed spectrum, such as teleoperated driving or platooning [54]. 

Under these circumstances, the real scenarios that we will face in the coming years will be those where 
vehicles, and other road users, will use different radio technologies. Therefore, CARAMEL addresses 
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both the interoperability of IEEE 802.11p and C-V2X technologies, and the securitisation of V2X 
communications. Interoperability between both technologies is implemented using infrastructure 
support, through the use of Multi-Access Edge Computing (MEC) the capabilities of which are described 
later in the section.  

• V2X Communication Protocol Architecture:  

This element contains the software package that enables the OBU to generate Facilities layer 
messages encapsulated on Basic Transport Protocol (BTP) and GeoNetworking protocol (GN). 
CARAMEL is going to use the open source framework Vanetza [58], updated accordingly, so it is able 
to perform all security and privacy related functionalities.  

• Security applications:  

This element contains all software functions in charge to interact with the PKI infrastructure and manage 
the registration and authorization procedures, as well as to obtain the pseudonymous authorization 
tickets and store them into the HSM according to [59]. These applications will use the LTE-Uu channel 
to transmit their information.  

• ITS Applications: 

This element represents any ITS application that the vehicle is executing. As for the CARAMEL’s 
testbed it is planned to use applications sending and receiving Cooperative Awareness Messages 
(CAM) and Decentralized Event Notification Messages (DENM) messages.  

 

 V2X Infrastructure 

Besides the internal elements in the car, in case of connected and cooperative mobility we should also 
take into account the fixed telecommunication infrastructure. The secure and interoperable V2X 
communication system is supported by a Secure Multi-Technology V2X Telecommunications 
Infrastructure, illustrated in Figure 26 which provides three main functionalities: 

• It enables interoperability between C-V2X and IEEE 802.11p vehicles. 

• It enables hosting of additional security functions embedded into the MEC infrastructure. It 
performs all vehicle registration and authorization through the PKI infrastructure.  

 

Figure 26: Overview of Secure Multi-Technology V2X Telecommunications Infrastructure  

The main components of the Secure Multi-Technology V2X Telecommunications Infrastructure are: 

• Radio equipment:  

It is deployed using: 
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o Accelleran LTE Small Cells Base Stations (eNBs)  

o IEEE 802.11p RSUs.  

All of them will use a fixed network to be connected to the MEC and PKI infrastructures. 

• Public Key Infrastructure:  

This element basically comprises five different servers: 

o The Root Certification Authority (RCA). This server, offline for security reasons, must be 
managed only by authorized personnel, and contains the root certificates for the entire PKI 
infrastructure. 

o The Online Certification Authority (OCA). This is an online server, signed by the RCA. Its 
main responsibility is to sign the different lower authorities in the PKI infrastructure, 
described in Figure 27. 

o Enrolment Authority (EA). This entity it’s in charge of providing the necessary certificates 
at the enrolment phase. This authority can only be managed from certain authorized 
locations (the manufacturers, authorized points, etc.) and can provide enrolment 
certificates, that are used by the car to ask for pseudonym certificates (or authorization 
tickets). 

o Authorization Authority (AA). The AA is the entity that manages the pseudonym certificates. 
These certificates are issued for ensuring privacy of the cars within the PKI infrastructure. 

o Validation Authority (VA). The VA is present to provide a way to ask the PKI infrastructure 
which certificates are revoked. It provides a CRL list with the revoked certificates, along 
with an online service that returns the state of a specific certificate in real-time. 

 

 

Figure 27: Certificate chain in CARAMEL PKI infrastructure  

 

In the enrolment phase, an ITS station requests enrolment credentials to an EA such that it can be 
trusted to function correctly by other ITS stations. In the authorization phase, an enrolled ITS station 
requests pseudonymous authorization tickets (AT) to an AA to get specific permissions (e.g. to access 
to a specific service/resource) ensuring confidentiality and privacy. Internally, the AA will ask the VA to 
check if the request is authorized. Finally, EA and AA can be trusted by ITS stations through validating 
their authenticity with the RCA [59]. This process is depicted in Figure 28.  
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Figure 28: CARAMEL PKI Infrastructure 

The PKI infrastructure is the enabler to provide security to V2X message transmissions and will be the 
basis to build and test the “Attack on the V2X message transmission” scenario. 

 

• MEC infrastructure:  

The Multi-access Edge Computing (MEC) server will be deployed to accommodate the required 
functions to run at the edge of the network, following, as much as possible, the ETSI MEC framework 
standardization (Figure 29). 

Figure 29: ETSI MEC Framework 
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The MEC system level management retains the global view of the whole MEC system, i.e. the collection 
of MEC hosts/servers, being the entity responsible to orchestrate and manage the MEC platform 
elements, the MEC app rules and requirements and the MEC app lifecycle operations.  

At the MEC host level, the MEC host/server sits along with its associated management subsystem. The 
MEC host level management module is a gateway, used by the above layer orchestrator, which enables 
the management of the MEC host and its running apps. The MEC host is constituted by the platform 
and the virtualization infrastructure on top of which the functions/apps will run. 

The Networks layer enables the physical connectivity to cellular networks, local networks and external 
networks (e.g. internet). 

To pursue the requirements of CARAMEL, it is intended to provide a framework that enables the 
deployment and management of MEC applications in a dynamic and flexible way, comprising: 

o Dashboard module - provides a user interface to deploy and manage MEC apps, to close 
the gap between the user and the orchestrator. 

o Orchestrator - manages MEC servers and their applications. 

o MEC Server - contains compute and network resources, on top of which the MEC host will 
run and provide a virtualized infrastructure to run applications. 

The MEC server provided in the project offers both the virtualized environment for MEC apps to be 
instantiated on, as well as the required V2X physical interfaces to the different underlying radio access 
technologies. It hosts applications for the following functionalities:  

(i) Message forwarding to provide interoperability between multi-technology communications:  

This functionality deals with the fact that during some transition time there will be cooperative ITS users 
using different access technologies. CARAMEL considers IEEE 802.11p working in the Control Channel 
(CCH) of the ITS-G5 band (5,9 GHz) and LTE-Uu radio working in one operator's band, which should 
be made interoperable thorough functionalities of the infrastructure. 

The MEC, relying on the different fixed radio equipment, will receive messages transmitted using one 
technology and will replicate them in the other technology, while conserving the original message 
signature.  

CARAMEL's is going to implement two different interoperability test cases: 

o Test case 1: The message is sent by one vehicle in one radio technology and the 
infrastructure forwards this message in the same region with the other radio technology 
(Figure 30). 

o Test case 2: The message is sent by one vehicle in one radio technology and the 
infrastructure forwards this message in another region with both radio technologies (Figure 
31). 

The MEC will have rules to decide which messages to forward and where to forward them. These rules 
will enable filtering and dropping message according to their importance, age, region of interest, type 
of destination vehicles, etc. 

The tests described above will be focussed on two main key performance indicators:  

o The increase of the transmission delay between the direct communication (V2V) and the 
communication that requires the infrastructure (V2I2V). Delay measurements will be 
performed using the GPS clock of the transmitting and receiving vehicles. 

o The forwarding capacity of the system expressed in number of messages that the 
infrastructure is able to process. For this measurement it is necessary to transmit a high 
number of V2X messages. CARAMEL will develop software that will run on one or two 
additional devices which will be able to emulate the transmission of many vehicles 
simultaneously. 
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Figure 30: Interoperability between radio technologies 

 

Figure 31: Interoperability between regions of interest 

 

(ii) Security function to distribute Revoked Certificates Lists (CRL) in real time to vehicles: 

The use of pseudonymous AT involves how these certificates are distributed among vehicles, how they 
are stored and how they are revoked. Project PRESERVE dealt with these issues and provides some 
proposals [60][61]. Eventually, vehicles which already have some of those valid pseudonymous AT 
stored, will need to have them revoked due to misbehaviour or administrative reasons. In TR 102 893 
V1.2.1 (March 2017), ETSI proposes to distribute information about compromised units, but this will 
cause congestion in the 5,9GHz ITS-G5 channels or it will require an additional communication channel. 
For this reason, at the present time, the Certificate Policy from the EU C-ITS platform does not foresee 
revocation of single C-ITS stations. Instead a “revocation by expiry” is specified, which means that short 
term certificates for communication have a rather short validity time, e.g. one week, and after that 
defined period they are not trusted anymore [62]. In this mechanism, it is important to limit the maximum 
preloading time to a reasonable time span. Preloading defines how long in advance short-term 
certificates, which are valid for a specified period and are intended for later use, can be loaded onto the 
vehicle. A too long preloading period, e.g. of several years, would pose a risk to the C-ITS trust system, 
since these certificates cannot be individually revoked later on. 

Nevertheless, in a highly reliable system, this approach is not effective and some method to distribute 
Certificate Revocation Lists (CRL) will soon be needed. Some authors have already published 
proposals, for instance: there are proposals for a versatile and low-complexity framework to facilitate 
the distribution of the CRL issued by the Certification Authority. Under these circumstances, CARAMEL 
will develop a system to distribute CRL to vehicles in real time. 
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This functionality comprises two test cases: 

o Test case 1: A process running in the MEC detects a critical situation in one vehicle (it can 
be a misbehaving or an administrative issue) and takes the decision to revoke its ATs. From 
this point, it will take all necessary actions to inform, in real time, the PKI servers and other 
vehicles of the system about this just revoked ATs. 

o Test case 2: The Anti-Hacking device detects a misbehaving in the vehicle, it informs the 
MEC about this situation, and henceforth, the system acts as in test case 1. 

Tests in this scenario will require triggering situations that can lead to certificate revocation in the MEC 
or in the Anti-Hacking device. We will use three options for this purpose. Firstly, CARAMEL will 
implement a small function of software that will randomly select moments in which the vehicle is 
supposed to be under attack, secondly, when the GPS spoofing detection system detects an attack, 
and thirdly, when the HSM detects an attack. 

All communication between OBUs and fixed infrastructure related to certificates and revoked certificates 
will be transmitted using the LTE-Uu channel. CARAMEL will study the implications of CRL distribution 
on channel load and its scalability depending on the number of revoked certificates. 

3.4 Data Collection and Selection Methodology 

This section describes the datasets that will be used for two of the three scenarios explained in 3.2. 
Note that the tamper attack scenario does not rely on any dataset, so we skip it in this part.  

 Location Spoofing Attack 

In the following, we describe a possible data selection technique to obtain the secondary location stream 
used in CARAMEL to validate the integrity of the satellite-based location measurements. We assume 
to have available at the CAN bus the measurements from the steering angle sensor, the yaw rate 
gyroscope and the wheel speed sensor, respectively denoted with: 

  

Then, it is possible to build a non-linear bicycle model of the vehicle system state following specific 
physical laws. A bicycle model is built under the basic assumption that the motion of a vehicle can be 
well approximated by a bicycle, i.e., collapsing the rear and the front axes into a single point. A 
representation of the model is given in Figure 32, together with the physical meaning of the assumed 
on-board sensors. 

 

Figure 32: Vehicle Bicycle Model Representation exploiting specific on-board measurements, i.e., 
steering angle sensor, yaw rate gyroscope and wheel speed sensor 
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Given the adopted bicycle model, we describe the motion of the “vehicle” considering the involved 
inertial forces, e.g., the friction of the wheels on the pavement. We start describing the vehicle 
movement relative to its body-frame, i.e., having the x-axis directed as the heading of the vehicle: 

  

where lf and lr represent the distance of the front wheel and the rear wheel from the mass barycentre, 
respectively, M is the mass of the vehicle, Cf and Cr represent the corner stiffness of the front and rear 
wheels, respectively.  

Given the one-step prediction of the vehicle movement in its body-frame, a simple coordinate 
transformation is applied to obtain a one-step prediction in the global geographic reference system: 

  

The associated covariance of the estimated position is computed with a Bayesian Filter e.g., an 
Extended Kalman Filter (EKF) approach.  

The EKF can also be used to fuse the obtained predicted vehicle location with some global positioning 
measurement. In the update step of the EKF, we assume to obtain a global positioning measurement 
of the vehicle through signals of opportunity (SOOP); however, any other type of global positioning 
measurement could be used instead. 

For SOOP, we can follow the approach proposed in [63]. A passive receiver located at the vehicle scans 
a predetermined set of bandwidths where transmitters are normally active, e.g., LTE bandwidths, TV 
bandwidths or Radio bandwidths. Thanks to the average received power at the selected bandwidths, it 
is possible to exploit well-known path loss models and to compute the approximate distance between 
the passive receiver and the corresponding transmitters. Applying standard multilateration techniques, 
it is then possible to obtain, with some uncertainty, the location of the vehicle relative to the transmitters 
and, subsequently, the global location of the vehicle if the transmitters’ locations are known. A possible 
hardware implementation of the above-mentioned solution is provided in Figure 33, where a HackRF 
One device passively scans multiple bandwidths. The HackRF One device is connected to a Raspberry 
Pi 3, where the needed software for passive scanning and position multilateration is running. 

 

 

 

 

 

 

 

 

Figure 33: SOOP Implementation 
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 Attack on the V2X Message Transmission 

The second scenario of the connected mobility use case involves a task that requires data for the 
purpose of training a ML algorithm. This task is about deciding the best moment to change the AT of 
the V2X messages to avoid being tracked by an attacker who is listening to the sent messages. 

Several datasets will be used for the training, test and validation of the ML algorithms used in this task. 
They are vehicular mobility datasets and many of them are openly distributed on the Internet. In 
principle, these open data would be enough to fulfil the requirements of this task. Although, if more 
specific data is needed, it would be produced by using simulators like CARLA or SUMO. 

Some of the open datasets already explored are summarized in Table 18. It includes both, datasets 
produced both by real and by simulated data. The Crawdad dataset originates from GPS data of taxis 
and the NGSIM dataset was created by images taken by cameras on the streets. On the other hand, 
the last two datasets shown in the table were produced with simulated data originating from two different 
simulators (SUMO and CARLA). 

Dataset Source Description Size 

Crawdad 

 

Real data from 
GPS 

Data registered: XY position of 
approximately 500 taxis collected over 
30 days 

Location: San Francisco Bay area 

91 MB 

 
Next Generation 
Simulation (NGSIM) 
Vehicle Trajectories 
and Supporting Data 

Real data from 
video cameras 

Data registered: cars XY position and ID 

Location: 

• Southbound US 101 and 
Lankershim Boulevard in Los 
Angeles, CA 

• Eastbound I-80 in Emeryville, CA 

• Peachtree Street in Atlanta, Georgia 

1,5 GB 

 Vehicular mobility 
trace of the city of 
Cologne 

 

Simulated data in 
SUMO 

 

Data registered: XY position of more 
than 700.000 car trips during 24 hours 

Location: Cologne Urban area (400 
square kilometres) 

7 GB 

Motion Distorted 
LiDAR Data 

 

Simulated data in 
CARLA 

 

Data registered: 

•  Town 1: 2.9 km of drivable roads 
with 90 vehicles for 5 minutes 

•  Town 2: 1.9 km of drivable roads with 
60 vehicles during 5 minutes 

17 GB 

Table 18: Data sources for ML algorithm training 

The collected data will need to be curated and enriched in order to reproduce the same information that 
is sent by the V2X messages. For this purpose, data processing methods will be applied to include car 
ID, AT reference number, car position (x and y), and velocity in the training datasets. 

http://crawdad.org/epfl/mobility/20090224/
https://www.opendatanetwork.com/dataset/data.transportation.gov/8ect-6jqj
https://www.opendatanetwork.com/dataset/data.transportation.gov/8ect-6jqj
https://www.opendatanetwork.com/dataset/data.transportation.gov/8ect-6jqj
https://www.opendatanetwork.com/dataset/data.transportation.gov/8ect-6jqj
https://www.opendatanetwork.com/dataset/data.transportation.gov/8ect-6jqj
http://kolntrace.project.citi-lab.fr/
http://kolntrace.project.citi-lab.fr/
http://kolntrace.project.citi-lab.fr/
http://asrl.utias.utoronto.ca/datasets/mdlidar
http://asrl.utias.utoronto.ca/datasets/mdlidar
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3.5 Use of Artificial Intelligence and Machine Learning 

In line with 3.4, this section skips the tamper attack because the CARAMEL approach is based on HW 
techniques to detect and prevent it. The other two scenarios can consider the use of AI/ML techniques, 
as explained below.  

 Location Spoofing Attack 

In this section, an approach for detecting the location spoofing attack that utilises AI/ML techniques to 
achieve cooperative vehicle localization is presented. 

  

 

 

Figure 34: Location Spoofing Detection Architecture 

 

Figure 34 represents the approach. In Step 1, each vehicle collects the useful measurements (absolute 
positions, relative distances, etc.). In Step 2, based on the cost function formulated by the 
measurements or the graph approach of the previous subsection, each vehicle estimates its position. 
In Step 3, the estimated positions will be compared with the GPS measurements, and if the difference 
is above a predefined threshold, then the attack has been detected.  

We focus on the robustification of the cooperative localization approach, that can be considered as a 
maximum likelihood approach, assuming that the noise in the different modalities can be modelled as 
a normal gaussian noise. It can be considered as an unsupervised AI approach. The robustification 
strategies are based either: i) on estimating vehicles locations using also input from cameras and range 
measurement from geotagged images, ii) by imposing constraints on additional optimization variables 
that correspond to the GPS spoofing attacks. 

Multi modal fusion (LIDAR/RADAR,GPS) between vehicles for accurate position estimation 

Autonomous driving is considered to be the major framework for cooperative Intelligent Transportation 
Systems (cITS). cITS applications relying on 5-G based Vehicular Ad hoc NETworks (VANETs) assume 
the availability of a positioning system to provide each vehicle with accurate location information 
regardless of operating conditions. Although the Global Positioning System (GPS) is the most common, 
accessible and cheap device for vehicle localization today, it still fails to fulfil cITS application 
requirements (localization error lower than 1.5 m), especially in challenged environments such as long 
tunnels and dense urban canyons. Moreover, other vehicle motion sensors (e.g. gyroscopes, 
accelerometers and odometers) that can contribute to the localization process, suffer from error 
accumulation. Thus, relying on the fact the 5-G VANETs allow Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communication capabilities, cooperative localization is considered nowadays a 
serious alternative to self-localization.  
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The main goal of cooperative localization is to exploit different sources of information coming from 
different vehicles within a short-range area, in order to enhance positioning system efficiency while 
keeping the computing cost at a reasonable level. In other words, vehicles share their location and 
environment information to others in order to increase their own global perception. It aims on collision 
avoidance/warning, cooperative adaptive cruise control, navigation, etc. It is expected to outperform 
self-localization, by taking advantage of sharing and fusion information coming from different sources 
such as sensors of multiple vehicles. The task of cooperative localization can be performed by a 
centralized architecture, where a single vehicle acts as a fusion centre that collects and processes the 
information the other vehicles sent, or by a distributed architecture where each vehicle acts as a fusion 
centre relying only on the information of its immediate neighbours.  

Consider a 2-D region where N interconnected, via V2X, vehicles of a VANET, are moving and 
collecting measurements. An example of VANET, is shown in Figure 36Figure 36. 

 

 

 
The location of the i-th vehicle at k-th time instant is given by xi(k) = [xi(k) yi(k)]T. Based on [64], each 
vehicle is able to know its absolute position from GPS and to measure its relative distance and angle 
of arrival to connected neighbouring vehicles using LIDAR or RADAR. The true relative distance zij 
between connected vehicles i and j is given by:  

 

The true angle of arrival za,ij between neighbouring vehicles  i and j is given by: 

 

Thus, the i-th vehicle exploits 3 measurement models: 

1. Relative distance measurement:  

2. Angle of Arrival measurement:  

3. Absolute position measurement:   

Figure 35: Example of VANET 
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where covariance matrix Σp is a diagonal matrix equal to diag(σx2, σy2) 

 

A common  approach in cooperative localization is to formulate (based on the measurement models) 
an objective cost function C(x) (according to Maximum Likelihood Estimation or MLE) and to minimize 
it with respect to locations xi, in order to reduce the error of absolute position measurement. According 
to MLE, the relative or self-measurements depend only on the locations of nodes or location of the self-
node involved.  

Thus, the desired cost function C(x) is given by: 

 

N(i) indicates the set of connected neighbours of the i-th vehicle. 

For the minimization of C(x), algorithms such as distributed ADMM [64] or cooperative gradient descent 
can be used. Other solution approaches, apart the previously described, include Extended Kalman 
Filtering [65], Bayesian Methods [66], Split covariance intersection filtering [67], etc. 

Besides the minimization of a cost function, one can rely on the topology of the graph that the moving 
vehicles create. The nodes vi = [ xi , yi ]T of this graph represent the true position of vehicles and the 
edges between vi and vj indicate that vehicles i and j are neighbours. An example of such graph of 
VANET is presented in Figure 36. 
 

 

Figure 36: Random VANET topology 

Given the graph, we can form the adjacency matrix A (where Aij = 1 if i and j are neighbours, 0 
otherwise) and the degree matrix D (where Dii = the degree of node vi). Given these two matrices, 
then the Laplacian matrix L = D - A.  Based on [68] and the Graph Signal Processing theory, we can 
define the differential coordinates δi = [δi(x) δi(y)], where: 

1. δi(x)  = (1/Ni) Σ (vi(x) – vj(x)) (1) 
2. δi(y)  = (1/Ni) Σ (vi(y) – vj(y)) (2) 

The neighbours of vi are vj and Ni is the total number of neighbours of vi. As we mentioned earlier, each 
vehicle is capable to measure the relative distance rij (distance of i and j) and azimuth angle/angle of 
arrival aij. Thus, relations (1) and (2) transform to: 

1. δi(x) = (1/Ni) Σ (-rij*sinaij) (3) 
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2. δi(y) = (1/Ni) Σ (-rij*cosaij) (4) 

In order to recover the true and unknown absolute coordinates [x y] of nodes v i, we have to solve 2 
linear systems: 

1. Lx = δ(χ) (5) 

2. Ly = δ(y) (6) 

Consequently, given the vehicles graph, we can compute the differential coordinates relying on 
distances and azimuth angles, coming from LIDAR/RADAR. Unfortunately, we cannot solve the linear 
systems (5) and (6) because L is singular. Thus, we have to add some known anchor points, such as 
the positions from GPS, in order to solve the systems and restore the desired absolute coordinates. 
The previously described method is known as Laplacian Processing, and based on the measurement 
models of GPS and LIDAR/RADAR the task of cooperative localization can be fulfilled. 

Robust and accurate vehicle localization plays a key role in building safety applications based on 
Vehicle-to-Vehicle (V2V) networks. While GPS is widely used for navigation systems, its localization 
accuracy poses a critical challenge for the proper operation of V2V safety networks. As a result, a hybrid 
solution that leverages visual and cooperative techniques for accurate position estimation should be 
provided. 

This solution should address the challenges that exist in the literature. First of all, GPS data is often 
noisy due to potential attacks and exhibits significant localization errors in many urban areas. Moreover, 
accurate localization from imagery often relies on structure-based techniques, and thus are limited in 
scale and are expensive to compute. There are also appearance variations caused by changes in 
seasonal and illumination conditions and that makes the retrieval approaches, which try to find the most 
relevant database images for the query image, less efficient. 

 

Figure 37: High-level architecture of fusion of GPS and LIDAR/RADAR data 

The visual part of the proposed solution is based on [69]. In general, given a video stream of images, a 
hybrid visual search and ego-motion approach is applied to leverage both image representation and 
temporal information. As a first step, a database in which every record will include a descriptor, e.g. 
[70][71][72] of each image and the GPS coordinates is created. Then, given a set of images, a visual 
search is applied against a set of relevant geo-tagged images from the database. As a result, a ranked 
list of images is obtained sorted by descriptors distances. Finally, a weighted average of the GPS 
coordinates of the extracted descriptors yield a corrected GPS value for the query image, providing a 
coarse localization fix. As a final step, the visual ego-motion is used to estimate the vehicle’s motion 
between consecutive video images. Fusing vehicle dynamics with the coarse location fixes, further 
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regularizes the localization error and yields a high accuracy location value. Finally, integrating both 
visual and the system described in the previous scenario (fusion of GPS and LIDAR/RADAR data), 
could lead to more accurate position estimation. In Figure 37, the architecture of the aforementioned 
procedure is presented.  

Integration of outliers into to the cooperative position estimation 

Consider the scenario described in the previous section: N interconnected vehicles are moving and 
collecting measurements such as GPS positions, relative distances and angles to neighbouring 
vehicles. If the GPS is spoofed, then the modified absolute position measurement model transforms to: 

 

where O(k) is sparse outlier matrix modelling the attacks on GPS at k-th time instant 

In order to reduce the effects of GPS spoofing and recover the true positions of vehicles, we need to 
minimize the following cost function with respect to locations xi and the outlier matrix O: 

 

Having the estimated positions, we can compare them with GPS measurements and if the difference is 
above a predefined threshold, then an attack has been detected. 

 Attack on the V2X Message Transmission 

This scenario considers four different types of attack already mentioned before: 

• Generation of fake messages 

• Sniff and replay messages of compliant vehicles 

• Messages sent by a compliant vehicle with a fraudulent identity 

• Tracking of vehicles by sniffing sent messages 

The first three considered attacks are countered by using the pseudo anonymous authentication tickets 
(AT) without any need of applying AI/ML techniques. The fourth attack will be mitigated by changing the 
AT of the V2X messages in order to avoid the possibility of tracking the car that is sending the V2X 
messages. The best moment to make the change of the AT together with the best moment to send the 
V2X messages will be calculated by Machine Learning algorithms. Two adversarial algorithms will be 
trained for this purpose: 

• The first algorithm will try to track the position of a car by analysing their sent and signed 
V2X messages. 
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• The second algorithm will learn when it is the best moment to change the pseudonymous 
certificate and to send the V2X message to fool the first algorithm. 

On top of that, some restrictions will be imposed on the algorithms when changing the certificates, i.e.: 
limited number of changes per day, maximum time without sending any certificated V2X message, no 
changes allowed during critical situations, etc. The scheme of the data flow and the algorithms is 
represented in Figure 38.  

 

 

Figure 38: Data flow for the attack on V2X message transmission scenario 

The data to train the ML models will be taken from several sources defined as the data lake. It will 
contain data from public datasets made with both real and simulated data. Additionally, if some specific 
data is required, new data will be simulated in traffic simulators such as CARLA or SUMO. From this 
data lake, the data will be integrated, reformatted and curated in order to create a consistent and 
exploitable dataset. This dataset will contain different dynamic scenarios with cars identified by their ID 
and their position (and some other data available in the data lake) for each time step. 

The formatted dataset will be enriched to integrate the V2X messages mechanisms. It mainly consists 
in adding an AT to each car and deciding how often the V2X message with the car position (velocity 
etc) will be send and when the AT certificate of the V2X messages will be changed. These last two 
parameters are key factors to be decided since the untraceability of the car will depend on them. 

A feature extraction is required to reduce the number of inputs in the ML tracking algorithm; otherwise, 
it will not be possible to train an algorithm that might content thousands of dimensions. That will be done 
taking into account that the actual position, the velocity and the time step limit the future position of a 
car. For example: a car with a maximum speed of 200 km/h cannot be 1 km away from the initial position 
after one second. 

The trained tracking algorithm will be tested to identify under which conditions a car can be trackable 
or not by listening to the V2X sent messages. This test will be repeated for different parameters of the 
V2X message protocol such as the frequency at which the V2X messages are sent. These processes 
will generate a new dataset containing the conditions at which a vehicle is trackable and at which it is 
not. With this dataset, the second ML algorithm that decides when to change the AT will be trained. 

3.6 Validation Methodology 

This section will explain the methods used to validate each of the scenarios, summarized in the following 
table: 
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Scenario Simulation Demonstration 

Location Spoofing Attack YES YES 

Attack on the V2X message 
transmission 

NO YES 

Tamper attack of vehicle’s OBU NO YES 

Table 19: Validation methods of scenarios in pillar 2 

 Location Spoofing Attack 

The application for the secondary location stream and the satellite-based location integrity check will 
be implemented in a container that will be also tested in CARLA. In CARLA, the simulated GPS location 
measurements will be tampered by adding a drift to simulate a GPS location spoofing attack. In case 
of the SOOP solution, a new stream of data will be added to the simulator as input at the application 
container. Such stream of data will be computed off-line (in order to be coherent with the simulated 
scenario) and it will consist of at least four passively scanned bandwidths, of which the transmitter global 
position is known. When a GPS location spoofing attack is identified in this simulated environment, an 
alarm is triggered by the application container. Ideally, a visual alarm will also be presented on screen. 

In a second phase, the reliability of the application for the GPS integrity check will be also shown in a 
dedicated demonstrator. The application container will be hosted by the anti-hacking device and the 
necessary measures for the secondary location stream for the vehicle are going to be retrieved from 
the CAN bus of a vehicle and from the necessary SDR hardware in real-time. 

 

Scenario Name Location Spoofing Attack 

Related Use Case  Connected Mobility 

 
Brief Description 

Using SDR hardware, the attacker is able to spoof GPS satellite signals. The 
vehicle relies on a second location stream to identify a possible GPS location 
spoofing attack, based on vehicle’s movement description and IMU 
measurements. 

Challenges 
1. Ability of counterfeiting legitimate GPS locations with small abnormal drifts 

2. Real-time fusion of IMU measurements with GPS-free secondary location 
stream 

Assumptions & 
Pre-Conditions 

1. In case of SOOP implementation for the secondary location stream, it is 
assumed that the location of the base stations/RSUs access points passively 
scanned is known. 
 
2. In case of SOOP implementation, a knowledge of the radio propagation 
conditions in the attacked area is assumed. 

Goal (Successful 
End Condition) 

In case of attack identification, the vehicle informs the PKI infrastructure 
about the attack in order to deploy the necessary countermeasures, e.g., the 
revocation of the attacked vehicle’s certificate. 

Involved Actors 
Malicious attacker 

Cooperative car 
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Fixed infrastructure 

Outside Infrastructure 

Scenario Initiation 
The cyber-attacker transmits fake GPS signals. 

Novelty 
In this scenario, a first implementation of GPS integrity check is presented. 
Furthermore, its importance lies on the ability of combining the self-
understanding attack capability of the vehicle with a PKI infrastructure. 

 
Main Flow 

1. The cyber-attacker alters legitimate GPS signals. 

2. The vehicle exploits a secondary location stream to validate the GPS 
measurements. 

3. Deviations between the two streams of vehicle locations are noted by the 
application container in the anti-hacking device. 

4. The anti-hacking device recognizes the attack and informs the passengers 
and the PKI server. 

5. The PKI server revokes real-time the certificate of the vehicle. 

Evaluation Criteria 
The anti-hacking device detects the attack and informs the vehicle’s 
passengers and the corresponding PKI server. (Binary evaluation) 

The anti-hacking device detects the attack within a few seconds. 

Table 20: Overview of Location Spoofing Attack scenario 

 Attack on the V2X Message Transmission 

A major concern in V2X is how the overhead imposed by the security mechanisms affects the overall 
delay budget of the V2X applications. In this regard, it will be necessary to measure the transmission 
delay, which will be implemented using the GPS clocks of the transmitting and receiving OBUs. In fact, 
all V2X messages contain generation timestamp, which can be compared with the reception time at the 
receiver OBU. 

 

Figure 39: Structure of secured and unsecured frames 

The second performance indicator is the increase of channel occupation due to the longer transmission 
time of secured V2X frames that contain the signature and, possibly, the AT certificate (Figure 39). 
CARAMEL will use communication protocols analyser/sniffer to capture transmitted packets and 
estimate the channel load of different scenarios and situations. 

The third performance indicator is the number of messages per second that an OBU can receive and 
process. Usually, an OBU needs to receive and process many more messages than it generates and 
transmits because it has to receive all messages transmitted from vehicles in the neighbourhood plus 
those retransmitted by the infrastructure. In order to measure the message reception capacity of the 
reception hardware and software of an OBU, it will require the transmission of a high number of V2X 
messages. CARAMEL will develop software that will run on one or two additional devices, which will be 
able to emulate the transmission of many vehicles simultaneously. 
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Finally, it will be necessary to develop the application software that generates fake messages in the 
OBUs. This software, instead of using standard security functions from the HSM, will sign messages at 
software level, using Vanetza’s functions. 

Scenario Name Attack on the V2X message transmission 

Related Use Case  Connected Mobility 

Brief Description 
There are two different kind of attacks: a) A malicious attacker transmits fake 
CAM and DENM messages and b) a malicious attacker tries to track a 
specific vehicle. 

Challenges 

1. Deploy a PKI system to register vehicles, distribute security credentials, 
authorize vehicles to transmit signed messages, revoke certificates and 
distribute lists of revoked certificates. 

2. Ability to detect fake messages: not signed, signed with a non valid 
certificate, signed with revoked certificates, replayed and non authorized. 

3. Ability to detect when a vehicle can be tracked due to the fact of using the 
same AT to sign messages and then select the optimal moment when the 
vehicle will change the current AT. 

Assumptions & 
Pre-Conditions 

1. The scenario is provided with a communications infrastructure: OBUs, 
RSUs, Small Cells and ITS G5 communications protocol suite. 

2. Vehicles are equipped with an HSM to store cryptographic material and a 
location system. 

Goal (Successful 
End Condition) 

1. Vehicles drop fake messages and prevent safety applications from being 
misinformed. 

2. Vehicles prevent from being tracked. 

Involved Actors 

Malicious attacker 

Cooperative car 

Fixed infrastructure 

PKI Infrastructure 

MEC 

Anti-hacking device 

Scenario Initiation 
a) The cyber-attacker transmits different type of fake messages. 

b) The anti-tracking algorithm  

Novelty 

This scenario will implement a complete security infrastructure for a vehicular 
communications system: PKI servers with capacity to distribute ATs and 
revoked certificate lists, message signature ability in the OBUs and a 
machine learning based algorithm to choose when a vehicle has to change 
the AT to avoid being tracked. 

 
Main Flow 

Case a) Fake messages: 

1a. Normal vehicles register to the PKI system and transmit and receive 
messages. 

2a. The attacker sends fake messages. 

3a. Normal vehicles check the signature of these messages, detect that are 
not compliant and drop them. 

Case b) tracking prevention: 

1b. Normal vehicles have a set of AT to sign messages. 

2b. The antihacking device starts the algorithm to choose which is the 
optimum moment to change the AT. 

3b. A tracking device tries to discover if messages signed with a renewed AT 
correspond to messages signed with a previous AT. 
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Evaluation Criteria 

Case a) fake messages: Normal vehicles detect all non compliant messages. 

Case b) tracking prevention: A tracking device is not able to relate old AT 
with renewed AT in a high percentage (80%). 

Table 21: Overview of the Attack on the V2X Message Transmission Scenario 

 Tamper Attack of Vehicle’s OBU 

The tampering attack scenario will be validated via a real-life demonstration involving the components 
listed below: 

Actors / stakeholders 

• Car OBU 

• Malicious attacker 

• Vehicle owner 

• OEM brand 

Car OBU HW interfaces 

• Ethernet Broad-R 

• USB interface  

• TTL interface  

• Wireless Interface 802.11p   

• CAN interface 

The sequence of actions to be performed for the implementation of such attack is illustrated in Figure 
40. 

 

Figure 40: Tamper attack of vehicle's OBU sequence flow 

 

Scenario Name Tamper Attack of Vehicle’s OBU 

Related Use Case  Connected Mobility 
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Brief Description 

The attacker is able to get physical access to an OBU by accessing the car. 
The attacker could also have acquired another OBU (e.g. aftermarket 
sample) in order to study potential vulnerabilities beforehand. 
 

Challenges 
1. Ability to detect the attack based on the recognition of anomalies in the 
physical parameters of the OBU. 

2. Timely detection of the attack. 
Assumptions & 
Pre-Conditions 

1. We have collected data based on the “normal” behaviour of the vehicle. 

2. There is successful monitoring of the vehicle. 
Goal (Successful 
End Condition) 

The attack has been recognized by the HDM and has informed both the 
rightful owner of the vehicle and the PKI server. 

Involved Actors 

Malicious attacker 

Cooperative car 

Fixed infrastructure 

Scenario Initiation The cyber-attacker physically accesses the vehicle and its OBU. 
 

Novelty 
This is a scenario combining physical attack on a smart vehicle with anomaly 
detection algorithms. Its importance lies on its capability to combine V2X 
communication security with real-world attacks. 

 
Main Flow 

1. The cyber-attacker physically accesses the smart vehicle. 

2. The vehicle is under the control of the attacker. 

3. The attacker performs the physical attack. 

4. The HSM compares the features extracted from the specific attack to the 
normal pattern that is programmed from the factory. 

5. The HSM recognizes the attack and informs the owner and the PKI server. 

Evaluation Criteria 
The HSM detects the attack and informs the rightful owner. (Binary 
evaluation) 

The HSM detects the attack under 1 minute. 

Table 22: Overview of Tamper attack of vehicle's OBU Scenario 

3.7 Use of the Anti-Hacking Device 

In the connected mobility use case, the anti-hacking device will support only the vehicle location 
spoofing scenario; for the other two scenarios different components of the CARAMEL solution will be 
used to detect the attacks. 

The anti-hacking device hosts the container that implements the GPS integrity check algorithm. The 
required inputs are the on-boards sensor readings from the CAN bus and the required data to compute 
the GPS-free global localization measurements. In case of SOOP implementation, there should be a 
stream of passively received signals from the spectrum scanned by the HackRF One device. In the 
CARAMEL scenario, the bandwidth scanned by the HackRF One covers the transmission bands of the 
base stations and the RSUs that will serve the demonstration area. 

Then, the HackRF One device requires to be on board of the vehicle, either indirectly, e.g., via the CAN 
bus or any wireless technology, or directly connected to the Anti-Hacking device. Furthermore, the 
container that checks GPS integrity requires to input also the GPS localization measurement that will 
be used to detect a possible attack. When a GPS spoofing attack is identified, an alarm is triggered by 
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the container within the Anti-Hacking Device to the on-board passengers and the PKI infrastructure via 
the OBU transmission interfaces. 

 

Figure 41: Use of anti-hacking device for GPS spoofing attack detection 

 

Figure 41 shows how data from the GPS sensor in the AVL test car is fed into the anti-hacking device 
where it is analysed by the attack detection algorithm running in a container. Since the detection of the 
GPS attack will not be based on ML algorithms but will use other methods as described in previous 
sections, there will be no ML model creation phase. The ML capabilities of the anti-hacking device 
hardware are probably not used for this scenario. 

 

Figure 42: Use of anti-hacking in simulation environment 

 

 

To support development of the GPS spoofing detection algorithm the anti-hacking device (either the 
Coral Dev Board or the simulated environment) can also be directly attached to the simulation 
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environment which will be based on AVL ModelConnect/VTD simulation software in this case (see 
Figure 42). In this case, higher level APIs (eg. REST APIs) will be used to facilitate the transfer of raw 
GPS sensor data. 

In addition, AVL List GmbH – Austria has made a primary goal to contribute in the topic of GPS 
Spoofing. Since, AVL List GmbH has already worked in the topics like secure gateway for 
communications and many cyber related topics communication by using GPS signals and making it as 
secure as possible.  

As a brief idea about making an Anti-hacking device for GPS Spoofing, AVL wants to go with the 
innovative approaches like Artificial Intelligence and Machine Learning. Bringing an AI enabled Anti – 
Hacking device for GPS Spoofing would be a promising step in making the Automated Mobility with 
advanced communication technologies safe and secure. Figure 43 shows the representation of the 
Anti-Hacking device for GPS Spoofing which is denoted as Intrusion Detection along with the In- house 
simulation setup. The intrusion detection will be a container inside the Anti-hacking device developed 
by T-Systems. The In-House simulation setup is named Model.CONNECT (see Annex I). It consists of 
components like VTD interface, Vehicle Dynamics, HMI Interface, GNSS sensor Simulation and 
Manipulation and Intrusion Detector or Anti – Hacking Device for GPS Spoofing. Monitoring and 
visualization of all the parameters and other supporting variables can be done in the desktop. 

 

 

Figure 43: Model.Connect Simulation setup for the Intrusion Detector                        

In Figure 44 a further step in implementing the Anti-hacking device as a realistic approach an idea is 
proposed to get the data from the vehicle using CAN communication interface. From a GNSS Stimulator 
the data is passed to a GNSS receiver and from the receiver it is sent to the detector via CAN interface.  

 

Figure 44: Step 2 implementation of the Model.Connect with intrusion detection 
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3.8 Functional Requirements 

 

Reg ID CRPL2-FR01 

Title Secure association 

Definition - Description The system shall be able to establish a communication channel 
between itself and another ITS station such that they can exchange 
messages according to negotiated security parameters.  

Target WP 3 

Priority Mandatory 

How addressed The CARAMEL platform will implement 802.11p and C-V2X 
communication technologies. 

 

Reg ID CRPL2-FR02 

Title Identity Management 

Definition - Description The system shall support simultaneous change of communication 
identifiers (like station ID, network ID, MAC address) and 
credentials used for secure communications, within the ITS station 

Target WP 3 

Priority Mandatory 

How addressed The CARAMEL platform will support a PKI key system, modified 
with pseudonyms, in order to address such issues. 

 

Reg ID CRPL2-FR03 

Title Replay protection 

Definition - Description The system shall verify that messages are sent/received in a 
consistent manner by including a timestamp in outgoing messages 
and by checking the timestamp of incoming messages 

Target WP 3 

Priority Mandatory 

How addressed The CARAMEL platform will include GPS clock in the messages 
for time control, and will discard messages timed-out. 

 

Reg ID CRPL2-FR04 

Title Plausibility validation 

Definition - Description Time stamps and geo-positions shall be checked for plausibility, 
both on incoming and outgoing messages.  

Target WP 3 

Priority Mandatory 

How addressed The CARAMEL platform will include algorithms capable of 
validating if geo-positions are plausible using a variety of methods. 

 

Reg ID CRPL2-FR05 

Title V2X unit self-protection 

Definition - Description The system shall be able to protect itself from spoofing and 
manipulation including physical and software tampering. 

Target WP 3 

Priority Mandatory 

How addressed The CARAMEL project will provide a hardware/software system 
that is able to detect if an OBU is physically attacked. If someone 
wants to take control of an OBU, they will have to avoid obstacles 
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that CARAMEL will put in their way, enabling the system to detect 
and protect main secrets. 

 

Reg ID CRPL2-FR06 

Title HSM communication 

Definition - Description The system shall be able to protect the V2X HSM interface from 
spoofing and manipulation either by physical or logical methods.  

Target WP 3 

Priority Mandatory 

How addressed The CARAMEL platform will work with signed bootloaders and 
Linux kernels to implement resilience against hardware and 
software modifications.  

 

Reg ID CRPL2-FR07 

Title Exclusive HSM 

Definition - Description All ECC key generation, ECDSA signature generation and ECIES 
encryption/decryption operations shall be performed by the V2X 
HSM. 

Target WP 3 

Priority Mandatory 

How addressed The CARAMEL platform will be equipped with an HSM where 
private key data will be stored. It will also include a cryptographic 
processor for sensitive operations. 

 

Reg ID CRPL2-FR08 

Title Messages anomaly detection 

Definition - Description The CARAMEL platform must be able to detect anomalies or 
forging of messages. 

Target WP 4 

Priority Mandatory 

How addressed The CARAMEL project will provide the PKI infrastructure that is 
able to detect irregularities in messages sent between vehicles. 
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4 Pillar 3 - Electromobility 

4.1 Context 

Plug-in Electric Vehicles (EVs) have demonstrated significant potential over the last years, in part due 
to the recent technological developments in the field of electrical engineering but also due to their 
potential to reduce greenhouse gas emissions and mitigate oil dependency, which is in tune with the 
growing environmental awareness of society. The current number of electric vehicles in EU is estimated 
to be over 1 million while in the global scale is over 5 million, but most importantly the trend towards EV 
is constantly increasing. In Figure 45, the deployment of electric cars is depicted for selected countries, 
showing an increasing trend over the last years with estimations predicting sales over 44 million vehicles 
per year by 2030 [97].  

 

Figure 45 The increasing trend of EV deployment in different countries [98]  

 

Plug-in EVs are considered a promising solution when it comes to reducing CO2 emissions in the 
transportation sector, but they are also accompanied by a series of technical challenges such as the 
additional charging infrastructure that must be installed in order to accommodate them. From the 
Distribution System Operator’s (DSO) perspective, the installation of new charging station can become 
a severe problem as the current power infrastructure does not support simultaneous charging of large 
numbers of electric vehicles. 

One way to overcome this is through smart charging. Smart charging refers to a system where an 
electric vehicle and a charging device share a data connection, and the charging device shares a data 
connection with a charging operator, thus it creates a smart grid among the EVs, the charging stations 
and the DSO. As opposed to traditional charging, smart charging allows the charging station’s owner 
to monitor, manage, and restrict the use of their devices remotely to optimize energy consumption. 

This capability, however, puts indirectly into risk the reliability and security of the power network, as 
neither the charging stations have deployed security mechanisms for identifying and preventing security 
threats and attacks, nor the DSO have implemented security mechanisms for mitigating potential 
disturbances of the network due to a break-down (or a hack) of the smart charging stations. 

Smart charging is complex system which requires the orchestration of a number of services such as 
metering and payment for energy, communication between the EV battery management system and 
the charge point, followed by a communication mechanism between the CP and a central management 
system, and finally the establishment of a communication channel between the CP and energy suppliers 
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(DSO, TSO, smart girds, etc.). Having in mind that the services are offered from different entities, these 
complex communication schemes create an environment susceptible to a number of security threats 
on different levels. 

The co-existence of an electrical system monitored and controlled from an ICT infrastructure is an open 
challenge due to the heterogeneity of the involved cyber-physical systems which require the 
standardization of protocols and the implementation of two primary interfaces, one for electricity and 
another for the management of the system. In the case of the smart charging scenario, the ICT system 
is related to the status, authorization, metering, and billing of the EV that interacts with the system.  

A high-level overview of the entities involved in the smart-charging use case are depicted in Figure 46. 
The DSO is responsible for the distribution of the electric power and ensures the functionality of the 
electricity network, the CPO takes care of the customer-end services (authentication, billing, etc.) 
alongside with the management of the charging points, the eMSP is responsible for setting the billing 
mechanism, the CP acts as the open gate to the system, and eventually there is the EV which is the 
end-user of the infrastructure. The roles/entities of the smart-charge use case that are described briefly 
above are presented in more detail in Table 23.  

 

Figure 46: A high level depiction of the entities getting engaged in the smart charging scenario [96] 

 

Entity Description 

Distribution System 
Operator – DSO 

The distribution system operator (DSO) manages the electrical grid. The DSO 
does not produce any electric power but does however ensure that it is 
transported from the power station to the place where it is needed. The most 
important task of the DSO is to maintain a stable, reliable and well-functioning 
electricity network. 

eMSP An eMSP is a market role that offers charging services to EV drivers. An eMSP 
provides value by enabling access to a variety of charge points around a 
geographic area, usually in the form of a charge card. This means the EMSP 
is responsible to set up contracts with customers (owners of EV cars) and for 
managing customer information and billing. 

Charging Point 
Operator - CPO 

The CPO is responsible for the management, maintenance and operation of 
the charging stations (both technical and administrative). The role of CPO can 
be segmented into: 1. Responsibility for administrative operation (e.g. access, 
roaming, billing to eMSP etc.) and 2. Responsibility for technical maintenance, 
which is often done by the manufacturer. CPOs play a very important role in 
the EV market as they are responsible for bridging the gap between the entities 
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managing and maintaining the physical electrical network – the DSOs – and 
all other entities: the energy providers, the customers and the eMSPs. 

Charging Point - CP Charge Points are devices where EVs get charged. Each CP contains at least 
one meter per socket (MID meter) owned and controlled by the CPO. This 
CPO meter is connected to the energy socket through which the EV gets 
charged and is used to measure the energy consumed by the EV. Each CP 
also includes a local controller (LC) with a connection (e.g.: GPRS or wire 
connection) to the back-office of the CPO. Among other things (e.g.: remote 
updates), such connection is used to authenticate the customer (EV owner) at 
the CPO. 

Electric Vehicle - 
EV 

Gets charged through a CP. In many cases a vehicle will charge to its 
maximum capacity but the vehicle can always determine its own charging 
profile within the range available 

 

Table 23: Description of the entities engaging the smart charging scenario 

 

GreenFlux provides a white-label cloud-based SaaS Service and Operations Platform which allows both 
CPOs and eMSP to run their EV charging business. The cloud-platform consists of three main 
functionalities: 

• With the operator functionality, customers can directly couple charging stations, enabling 
them to do operational management, fault analysis, retrieve data from the charging station 
and provide smart charging services. 

• With the service provider functionality, customers can provide EV-drivers with RFID cards and 
App-plugins. Data can be exchanged with other partners enabling roaming services. 

• With the billing functionality, many pricing schemes for EV charging become possible and 
wholesale and retail billing is supported. 

As a charging station operator, GreenFlux independently manages around 3,000 charging stations 
(both private and public) in the Netherlands while at the same time as eMSP, GreenFlux serves around 
1,000 EV drivers. In addition, the GreenFlux office has a parking area with charge points that is used 
as a testing ground. 

4.2 Scenarios Description 

For the third pillar of the CARAMEL project (electromobility) two scenarios will be demonstrated 
covering the most important cyber-attacks that exploit known vulnerabilities of the electromobility 
ecosystem. The first scenario is a distortion attack where the attacker gets the control of the smart-
charging network and therefore can potentially cause disruptions to the electric grid through 
synchronized demands of energy. The second scenario examines the scheduling abuse of the electric 
grid adopting a decentralized solution for its mitigation. The difference between the scenarios lies in the 
location of the attack. In the first scenario the attacker has access to the infrastructure (hardware / 
software) while in the second scenario the attacker can influence the behavior of the user (or his car). 
The effects of both attacks however can be of similar impact. 

 Smart Charging Abuse 

A cloud-based back office of a CPO communicates with a charge point via the Open Charge Point 
Protocol (OCPP). This standard is supported by more than 97% of the connected charging stations 
worldwide. The charge capacity of a charging station can be set from the cloud by means of OCPP 
requests. Versions 1.6 and 2.0 of this protocol support smart charging. This means that one platform 
can connect to a wide range of charging stations and still be able to provide smart charging services to 
all of them.  

The charging station then in turn communicates with the EV via the IEC 61851 protocol (for high speed 
DC charging other standards are used, but these are usually not used for smart charging).  
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There are a few important observations to be made here: 

• Via OCPP, the maximum charge rate for a charge point/socket can be set for a specific period 

• The charge point imposes this maximum on the EV 

• The EV can choose its own charge rate, as long as it is below the maximum 

It is therefore not possible to set a specific charge rate for an electric vehicle, only the maximum charge 
rate can be set. 

There are currently around 20,000 charging stations connected to GSOP (GreenFlux Services and 
Operations Platform). On average, a charging station can charge at around 11 kW. This means that 
someone with access to GSOP has control over charging stations with a combined capacity of around 
220 MW, equal to the power output of a medium-sized power plant. It is expected that around 200,000 
charging stations will be connected in 5 years, which corresponds to a potential capacity of around 2 
GW. Simultaneous switching on or off of all these charging stations can lead to a pan-European 
blackout. 

The cloud platform receives meter readings from the connected charging stations at fixed time intervals 
(more information on data flows in this scenario can be found in Section 3.4). These are generally very 
predictable. Irregularities due to a cyber-attack produce variations in these meter values and can be 
detected by an ML algorithm. 

The protection of the European electric grid should become a priority for all entities involved in the EV 
ecosystem. The output of this scenario is aiming at increasing the cyber-security of the GreenFlux’s 
platform through the integration of ML techniques for identifying anomalies in the charging patterns, and 
therefore minimize the exposure of both the enterprise’s database and the stability of the electric grid. 
The scenario covers both the ICT and the electric engineering domain on an effort towards increasing 
the cybersecurity on what is called Energy Internet [95].  

 EV Scheduling Abuse 

The influx of a large number of electrical loads originating for EVs without any coordination could prove 
problematic and challenging to the electrical grid. The lack of a proper coordination scheme could cause 
voltage magnitude drops and unacceptable load peaks even if the total penetration of EV loads does 
not exceed the 10% [73]. Contrarily, the control of EV loads can minimize charging costs or provide 
auxiliary services leveraging power electronics.  

As evident from the above paragraph, the area of EV scheduling is a very active area of current 
research, a review of which can be found in [74]. The approaches proposed can be categorized 
concerning the degree of the centralization of the scheduling control. More decentralized control 
strategies enjoy more computational resources and enhance user privacy. In [75] a heuristic 
decentralized EV scheduling mechanism is proposed which is based on congestion pricing used in 
Internet Protocol networks. A game theoretic approach is described in [76], in which a Nash equilibrium 
point is proved to exist, but with the unrealistic assumption that all vehicles share the same charging 
request and plug in/out times. The works described in [77] and [78] propose Lagrange relaxation 
method, iterative optimal decentralized relaxation schemes. The coordination of the EVs is 
accomplished through the distribution of locational marginal prices in [79]. Furthermore, in [80] [8] is 
demonstrated that a feasible valley-filling charging profile is optimal for any convex charging cost and 
is proposed a decentralized protocol that can be interpreted as a projected gradient descent (PGD). In 
[81] and in [82] an ant-based swarm algorithm and a multi-agent system for the coordination of charging 
are proposed respectively. The issue of electrical charging is tackled in a decentralized manner via the 
alternating direction method of multipliers (ADMM) in [83]. Moreover, in [84] the problem of spatial 
coupling introduced by transformer capacity limitations is addressed by utilizing a combination of ADMM 
and PGD. The authors of [85] propose a real-time decentralized charging method based on dual 
decomposition a projected sub-gradient. With respect to unpredictable load and vehicle plug-in times, 
an online decentralized charging scheme is described in [86]. Its asymptotic performance is analysed 
under the presumption that the EV charging requirements can automatically be satisfied. Finally, in [87] 
by using the water filling scheme, a joint optimal power flow and EV management problem is solved. 

As a result of the analysis of the literature discussed above, an EV scheduling abuse scenario will be 
developed and tested as described in the following subsections. The goal of this scenario is two fold: 
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• To present potential cyber attacks that affect the scheduling functionalities that are part of 

the controller installed in the electric vehicle, leading to an overload to the grid. 

• To improve security at the vehicle controller via novel asynchronous decentralized 
approaches which are robust to cyber-failures. 

 

4.3 Enabling Infrastructure 

The infrastructure associated with this use case consists of two sides. On the one hand there is the ICT 
infrastructure around the platform. This consists of the (mainly software-based) facilities that are 
required to keep GSOP operational. On the other hand, there is the physical infrastructure of a charge 
points where energy transfer takes place by authorised users identified by a charge card. Both 
infrastructures are described in more detail in the following sections. 

 Platform Infrastructure 

The GreenFlux Charging Solution runs partly on a public IP infrastructure. A high-level scheme is shown 
in Figure 47.  

 

 

 

 

Figure 47: High-level architecture of the GreenFlux Charging Solution   

• GSOP is the central application; it consists of a set of services that are hosted in the 
Microsoft Azure Cloud. 

• CP are the ICU charging stations that are located at the charging premises. 

• IP Infrastructure is the connecting network between the CP and GSOP. This can be either 
a public or a private IP network. 

GSOP has the possibility to connect to other central applications, such as DSO’s and charging service 
providers. These connections are public internet based. 

GSOP 
GSOP is a collection of application and storage services that are all hosted on the Microsoft Azure 
cloud. These services communicate with each other using HTTPS and secure authentication tokens. 
For Azure the Platform as a Service (PaaS) model is used where the application services run on cloud 
services hosted by Microsoft. Azure manages the security of the cloud services by means of various 
threat management activities, including intrusion detection, DDoS attack prevention and penetration 
testing3. 

 
3 https://www.microsoft.com/en-us/TrustCenter/Security/AzureSecurity 
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CP 
The chargepoints are controlled by an embedded device, the controller. The controller is only accessible 
via GSOP, using the infrastructure and the OCPP application protocol as described below. 

Figure 48 illustrates the two possibilities for connections between CP and GSOP. 

 

 

 

Charge points can either be connected via a private network or via the public internet. 

• Private connection: The charge point is equipped with a SIM card that is configured to set up a 
mobile data connection to a private APN (access point). From the private APN a site-to-site 
VPN tunnel is available to GSOP. 

• Public internet: The charge point uses the public infrastructure to reach GSOP. 

The private connection is secured and encrypted by means of VPN tunnel. The public internet 
connection is not secure, therefore the application protocol between CP and GSOP needs to be secure.  

Application Protocol 

OCPP4 is the application protocol connecting CPs and the GSOP. It uses web sockets to abstract from 
the underlying infrastructure. Two versions are possible: 

• In a private connection infrastructure, the OCPP web socket connection is set-up without 
encryption (ws://) 

• In a public internet infrastructure, the OCPP web socket connection is set-up with encryption: 
(wss://). The wss:// requires a server certificate for GSOP. This is either a GreenFlux certificate, 
when GSOP is deployed by GreenFlux, or a dedicated certificate for a dedicated GSOP 
instance deployment. 

The charge point always initiates the web socket connections; it will not accept web socket connection 
requests. 

Chargepoint Infrastructure 

 
4 www.openchargealliance.org 

Figure 48: Possible connections between CP and GSOP 

http://www.openchargealliance.org/
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 The Charge Point has several functions such as: 

• Providing and controlling the energy to the EV using the Electric Vehicle Supply Equipment 
(EVSE) component 

• Collecting the measurements from the meter for each charge of an Electric Vehicle. 

• Identifying and authorizing EV users via user authentication component 

• Enabling remote capabilities (e.g. adjustment of the maximum current allowed by 
the Charge Point) to the Charge Point via the Local Controller component over WAN. 

Figure 49 illustrates the architecture of the EV Charging Systems that are in scope of this project. 

 

 

 

The externally reachable interfaces of the ChargePoint are: 

1. the WAN interface, 
2. the Maintenance interface, and 
3. the User Authentication (UA) interface 

Note in particular that the internal interfaces in the Charge Point are not covered by security measures. 
In the current situation most of these interfaces use serial protocols with no security features. This 

Figure 49: Charge Point System Architecture 
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exclusion of these interfaces implies that the inside of the Charge Point is a trusted environment, 
meaning that anyone with physical access to the internal systems can compromise the Charge Point.  

The Charge Point System Architecture references various items in the Graphic Legend: 

• An Entity represents a main part of the EV charging system. 

• A Device identifies the component included in the EV charging system. A device is 
can contain Modules and can have Interfaces to communicate with other devices. 

• A Module identifies the physical part of the Device where important functionalities 
are to be found. 

• An Interface defines the communication link between two Devices.  

4.4 Data Collection and Selection Methodology 

In this section the information flows and data exchanges between parties involved in the described 
scenarios are discussed. Parts of these messages are stored in a database and can be used for 
analysis. 

 Meter Values and CDRs 

 
The interaction starts with the EV driver plugging in the charging cable and swiping his charge card to 
start a charging session. Figure 50 describes the messages flows between involved parties. 

1. Authentication: A customer holding a valid RFID card (i.e., authentication token) uses it to 
authenticate himself at the CP and waits until its validity is checked. Authentication by the CP 
requires interaction with the CPO and eMSP. The CP extracts the UID of the card and sends 
an authentication request to the CPO. The CPO contacts the eMSP and checks if the customer 
is actually authorised to charge at such a CP. A response is then generated and traced back to 
the CP and to the customer afterwards. 

2. Charging: In case the customer is allowed to charge, i.e., if authentication is successful, the 
cable is locked (a pin on the inside of the socket is automatically moved through the car plug). 
The CP starts the charging by creating an OCPP transaction session that will lock the socket 
until the customer decides to re-authenticate again. While in charging mode, the CP sends 
meter readings (MeterValues) to the CPO every 15 minutes. These MeterValues are stored in 
a database. When the customer wishes to unplug the cable, he has to re-authenticate himself 
again to the CP (using the RFID card). In most of the cases, this second authentication is 
performed locally at the CP and does not require any interaction with the CPO. After the session 
is completed a Charge Details Record (CDR) is forwarded to the eMSP. This CDR includes the 
customer UID and the total amount of energy charged, the CP identifier (where the charge took 
place) and the starting and ending time of the transaction.  

3. Billing: After the whole process is completed (i.e. after charging the car), the eMSP bills the 
customer. This is usually done on a monthly basis and according to the contracted service.
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 Smart Charging 

In order to be able to forecast and divide the assigned capacities per cable and per eMSP for specific 
time slots of the next 24 hours, the DSO relies on some variables: historical usage data (of the DSO 
meter in the transformer), aggregated meter readings per CPO and per cable (from the CPO meter in 
the CP) and weather forecasts. The DSO makes a forecast based on the historical usage data and 
weather forecasts of the next 24 hours and uses the aggregated meter readings to divide the capacity 
per CPO and per cable. The historical usage data is obtained directly from the meter placed in the 
transformer serving the specific cable. Weather forecasts are retrieved through a web service 
designated for this purpose. Figure 51 depicts the message flows between the involved parties. 

After calculating the forecasts, the DSO sends them (using the OSCP protocol) to the CPO, which in 
turn forwards them to the corresponding CPs (using the OCPP protocol). Upon reception of the 
forecasts an acknowledgement message is always sent back to the DSO. The CPs will be able to 
charge the cars according to the capacity dynamically assigned at each time slot. 

Every 24h the CPO can then send the aggregated meter readings per cable to the DSO (the combined 
meter readings of all CPO meters in all CPs on a cable), such that the DSO can use those values to 
divide the forecasted capacity and provide them to the energy supplier for billing purposes. 

Figure 50: Message flows between involved parties 
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 GreenFlux Database 

The term smart charging is used to stress the importance of the data exchange between an electric 
vehicle and a charging station, as opposed to traditional charging where the charging devices are not 
connected to the cloud. This connection of the charging device to the cloud allows the charging station 
owner (in our use case GreenFlux) to monitor, manage, and restrict the power supply of each station 
achieving resources’ optimization and ensuring the grid from overcharging issues and a potential 
blackout. 

The cloud-enabled solutions for smart charging allow modifications of the system’s features on-the-go 
without the need for upgrade of the existing infrastructure, offering an effortless and secure way to add 
or remove features at will. A smart charging solution is a sustainable investment as any potential change 
on the demands can be turned into new features and added to the current infrastructure. Since the 
charging stations are connected to the cloud, they can be managed based on various signals (features 
in the database) such as: the requested volume (kWh), local electricity consumption, the start time 
of the charging, the requested amperage, the amount of other vehicles being charged or electrical 
devices being used on a nearby premise. The inclusion of heterogeneous data requires the 
installation of a smart charging system that can prioritize the requests from different clients and 
eventually create a more sustainable energy system based on renewable energy sources. 

In the context of CARAMEL, the GreenFlux EV charging dataset from GreenFlux’s lab in Amsterdam 
will be used. This dataset is comprised of millions of charge sessions hosted on the cloud platform from 
throughout the Netherlands dating back to 2012. The database consists of four tables, each one of 
them representing a unique entity in the EV scenario, namely: the Charge Points, the Charge Detail 
Records (CDRs), the Connections and the Meter Values (MVs). 

The table Charge Points represents the actual charging points connected to the GreenFlux platform 
and contain information for their geo-location features, such as address, zip code and city. as depicted 
in Table 24. The features of the table provide the necessary information in order to the charge points to 

Figure 51: Smart charging message flow 
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be located both intuitively from the security administrator (country, city, zip), but also contain information 
that can be used from another software (longitude, latitude) for visualization purposes.  

Column Datatype Description 

ID PK, Int Unique ID for Charge Points 

ExternalID Unique ID for Charge Points External charge point identifier 

Address Nvarchar (255) Charge point address 

Zipcode External charge point identifier Charge point zipcode 

City Nvarchar (max) Charge point city 

Country Charge point address Charge point Country (NLD = 
Netherlands) 

Latitude Nvarchar  (max) Charge point latitude 
coordinate 

Longitude Charge point zipcode Charge point longitude 
coordinate 

Table 24: An overview of the ChargingPoint table of the GreenFlux's database 

The table Charge Detail Records (CDRs), as shown in Table 25, describes the necessary details of 
each charging attempt such as the duration and the volume, but it also includes features from other 
tables as foreign key in order to express the correlation with the other entities of the grid. Therefore, 
every record to the database includes the unique ID of the charge card used by the EV driver, and the 
unique ID of the charging station. The features of duration, volume and session start/end time have the 
highest value for the AI algorithms, as they can offer a useful insight for the pattern of a charging 
session. 

Column Datatype Description 

ID PK, int ID for CDR 

Duration Nvarchar (50) Duration of session 

Volume Nvarchar (50) Volume in kWh 

AuthenticationId Nvarchar (50) Unique charge card ID 

ChargePoint_ID FK, int Unique Charge Point ID 

ConnectorId Nvarchar(255) ChargePoint Connector 
Identifier 

dStart datetime Session start time 

dEnd datetime Session end time 

Table 25: An overview of the Charge Detail Records table of the GreenFlux's database 
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The different tables in the GreenFlux’s database represent different entities in the grid, and the linking 
of the entities in the database is achieved through the table Connections, as shown in Table 26, the 
goal of which is to accomplish this connection. 

 

Column Datatype Description 

ID PK, int Connection identifier 

ConnectorId int ChargePoint Connector 
Identifier 

ChargePoint_ID FK, int Unique ChargePoint ID 

Table 26: An overview of the Connections table of GreenFlux’s database 

The last table in the GreenFlux’s database is the Meter Values table, shown in Table 27, which consists 
of information about the actual values of the charging process. Apart from the technical details of the 
table, it contains the connection_ID as a foreign key in order to be linked with the other entities of the 
system.  

 

Column Datatype Description 

ID PK, int Meter Value identifier 

Timestamp datetime In-session timestamp 

Value Decimal(18,2) Measured Value 

ValueType int Specifies unit of measurement 

ReadingContext int (0 = Wh, 1 = kWh, 8 = Amp) 

Connection_ID FK, int Specifies measurement or 
instruction 

Table 27: An overview of the Meter Values Table of GreenFlux’s database 

GreenFlux’s database also contains tables operating as linking bridges between the entities offering 
the necessary interconnection. These tables are not mentioned as they do not offer any valuable 
features that can be used into the analysis of the system under a cybersecurity scope.     

4.5 Use of Artificial Intelligence and Machine Learning 

 Smart Charging Abuse Scenario 

The integration of AI/ML techniques into the GreenFlux’s smart charging system can secure not only 
the enterprise’s grid but could also prevent potential catastrophic abuse of EU’s electrical grid. In the 
scenario of the smart charging abuse, different users are synchronized (either on purpose or 
unintentionally) and proceed timely in connection/disconnection actions, causing an unexpected load 
to the electrical grid. Such actions can be prevented if AI/ML techniques are integrated into the 
GreenFlux’s software. 
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The data that have been collected in GreenFlux’s lab since 2012 can be used as a starting point for 
getting an insight of the charging stations’ behaviour, extracting the attributes of a “normal” charging 
action and identifying suspicious actions as outliers. As an outlier we define a charging process that 
cannot be grouped into what is called expected behaviour (inlier), for example an EV requests a greater 
amount of power, or a specific car(s) is/are charged on a different station(s) from the usual ones, 
showing an unusual behaviour that should be further investigated. 

The detection of outliers is achieved either through the application of unsupervised ML algorithms or 
through the definition of a series of logic rules that should cover the entire spectrum of what is 
characterised as “normal behaviour”. In the context of CARAMEL, the available data will be used, and 
a series of unsupervised ML algorithms will be deployed in an effort to identify actions that are potential 
threats to the electrical grid. As long as the objective is to identify abnormal activity that can harm the 
electric grid, there is no need to proceed into simulating specific cyber-attack attacks and afterwards 
deploying supervised classification algorithms. 

The abuse detection workflow is depicted in Figure 52 offering a more intuitively approach for the 
application of the ML algorithms for the improvement of the EV’s cybersecurity. The algorithm receives 
both real-time data (meter values) and historic values from the GreenFlux’s database that are fed into 
the abuse detection system predicting if the incoming event is a legitimate or indicates a cyberthreat. 
In the latter case the CPO and the DSO are warned, otherwise the charging continues.   

 

A series of different methods will be deployed in the collected data, aiming to not only deliver a proof-
of-concept demonstration but also to provide some benchmarks for the effectiveness of different 
algorithms on the field of EV cybersecurity, introducing a data-driven approach for secure smart 
charging. The integration of AI/ML into the cybersecurity is a necessity towards the cyber-crisis 
management on EU level, as it provides the chance to obtain actionable insights from large amounts of 
data (big data), such behavioral activity otherwise unfeasible for humans to analyze [99]. On a more 
technical level, three different methods will be deployed in the smart charging abuse scenario: 

• Z-Score (Standard Deviation): For different features (e.g. Volume, Duration, ReadingContext) of 
GreenFlux’s dataset it is going to be tested if a registration (e.g. charging action) is within three 

Figure 52: An overview of the Abuse Detection workflow 
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standard deviations, if not then it is considered as an outlier. Figure 53 presents a graphical 
representation of a normal distribution and its correlation with standard deviation. For example, the 
number of cars on a working day for a specific datetime can be predicted based on the mean value 
of previous weeks; if on a specific datetime the connected cars are more than 2 standard deviation 
away from the mean value, it is indicative of an anomalous behavior. It has to be mentioned that 
the standard deviation score is not a ML algorithm, but it is often used as a benchmark for 
unsupervised ML algorithms, as it is an effective approach that can be easily understood from the 
human perspective. A drawback of the approach is that can only be used with parametric 
distributions in a low dimensional feature space, thus in a future expansion of the feature collected 
from the GreenFlux’s software it might not be a suggested approach. 

• Density-based functions: Density-based algorithms rely on the hypothesis that density of points 
around an outlier point is significantly lower compared to an inlier point. The rationale is based on 
the hypothesis that similar events (e.g. EV charging on a specific CP) have (very) similar 
characteristics (e.g. charging time) in contrast to abnormal activity that might indicate a cyber-threat. 
As depicted in Figure 54, every point/event has a specific distance to any other point/event when 
mapped into a 2-d representation. Based on this distance different clusters of similar events can be 
created, group similar events, and therefore locate outliers. 

 

Figure 53: An example of standard deviation applied on normal distribution 

Figure 54: A graphical representation of density-based functions 
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The density-based algorithms also offer an intuitive graphical interpretation when applied on single-
dimensional data (power requested, time of charging, etc.). The algorithms can also work on multi-
dimensional data and are actually suggested for multidimensional feature space (n >3), but the 
visualization of the results is not easily interpreted by humans. In future expansions of GreenFlux’s 
dataset which includes more features, the density-based approach can have an even greater 
impact. A drawback of this approach is the arbitrarily definition of the k variable, which may cause 
overfitting-related problems. 

• Isolation Forest: Isolation forest is an unsupervised learning algorithm that belongs to the 
ensemble decision trees family, isolating anomalies instead of creating clusters of similar events 
such as the density-based algorithms. The algorithm is based on the concept that anomalies have 
extreme values compared to normal instances and therefore it is possible to isolate them. The 
isolation algorithm is based on iterations that generate partitions of the data sample by randomly 
selecting an attribute and then selecting a split value for this attribute. This recursive partition of the 
sample can be represented by a tree structure named Isolation Tree, and the length of the path is 
the number of iterations that are required in order to isolate the path. A graphical illustration of the 
algorithm is depicted on Figure 55. The left side depicts the multiple iterations of the algorithms in 
order to isolate an inlier, in contrast to right side, where the algorithm isolates the outlier point in 5 
iterations. For instance, a typical charging action does not present any specific characteristics that 
can easily lead to its isolation it similarly to the left part of the figure, but a charging action that 
requests an unusual volume can be isolated faster from the algorithm, similar to the right part of the 
figure.  

 

 

A characteristic of the isolation forest is the algorithm’s ability to perform well even if the training set 
does not contain any anomalous point, because the algorithm perceives the high values of a path length 
h(x) of an outlier x instance as another data point. Therefore, there is no need for generating data that 
mimic anomalous behavior and integrated them into the existing GreenFlux’s database. 

 EV Scheduling Abuse Scenario 

The work presented in [88] tackled with the problem of EV charging scheduling and in addition examined 
an asynchronous charging scheme for dealing with cyber failures/attacks in communication links. More 
specifically the authors describe a decentralized charging protocol based on the Frank-Wolf method. 
The devised scheme provides fast convergence, especially during the first iterations. The overall 
computational time is reduced since its closed-form updates pose minimal processing requirements for 
the controllers of the vehicles. Conducted numerical experiments have demonstrated a 100-times 
speed-up advantage over existing alternatives. However, the feature that differentiates this approach 

Figure 55: Overview of Isolation Forest Algorithm output 



CARAMEL (No. 833611) D2.1 March 2020 

Page 97 of 117 
 

 

from the others is the provision for copying with communication failures between the vehicle and the 
data aggregator. The notion behind this is the adoption of an asynchronous variant of the charging 
scheme. The judicious modification of the step size produces convergence rates that keep up with the 
respective rates produced by the synchronous method. The work complements the work in [89], where 
the plain Frank-Wolfe scheme was used as a basis for constructing synchronous charging protocols 
complying with distribution grid constraints. 

The Frank-Wolfe algorithm is a first-order optimization algorithm for constrained convex optimization. 
The method, which is also known as conditional gradient algorithm, selects an initial feasible solution 
vector and iterates for a step size γκ ∈(0,1]. The step size can be determined by selecting a proper value 

so that a faster convergence rate can be achieved, especially in the first iteration. But firstly we define 
the conditions of the problem. Supposedly we have a fleet of N EVs that have to be charged over a 
period of T consecutive time slots by a data aggregator. The time slots comprise the set T:= {t: t=1, …, 
T}. The charging rate of each vehicle at every time slot is denoted by pn(t) and its value lies between 
zero and a maximum value pn(t) that is determined mainly by the battery specifications of the vehicle. 
Every vehicle is charging only when is connected and thus the maximum charging rate of a vehicle n 
has the maximum value only for a subset Tn of T, during which the vehicle is connected equals to zero. 
Outside this subset the maximum charging rate equals to zero. At the end of time horizon T, its vehicle 
has consumed total energy represented by Bn which depends on the battery and the initial and final 
charging state of the vehicle. Therefore, for each vehicle exists a specific charging profile pn := [pn(1) 
… pn(T)] which lies in the set Pn ∶={pn ∶ pnT1 = Bn, 0≤ pn(t) ≤ pn(t)  ∀t ∈T} which is convex and compact. 

The goal of the aggregator is to minimize the electricity cost by the optimal EV charging problem, proved 
that solving the aforementioned optimization charging problem is rendered equivalent to solving another 
problem ensued by the previous one by using the electricity cost H(p) quadratic function. The advantage 
of the latter is that it can be efficiently solved utilizing the Frank-Wolfe algorithm since H(p) is convex 
differentiable and P is convex and compact.  

 

4.6 Validation Methodology 

 Smart Charging Abuse 

The smart charging abuse scenario is based on real data that collected by GreenFlux since 2012 on its 
lab in Amsterdam, therefore no simulation needs to take place. The challenge that is created when 
unsupervised ML algorithms are applied lies on the evaluation of the algorithms’ performance; a known 
problem in the scientific community [90][91]. The goal of the clustering algorithms is to define 
separations of the data based on some assumptions such that the points of a cluster are similar to some 
ground truth set of classes or the point satisfies the hypothesis that the points belong to the same cluster 
present higher similarity in compared to points outside of the cluster. In the context of CARAMEL, the 
first hypothesis could end up on creating categories of electric charges based on the V consumption 
that is requested, and in the second alternative some probability measure (log-likelihood, perplexity, 
etc.) can be applied on the data. 

Another approach that can be followed is a combination of supervised and unsupervised ML techniques. 
An iteration of this combination is described as follows: step 1) application of the clustering algorithms, 
step 2) comparison with the results of the supervised algorithms, step 3) adjusting the clustering 
algorithm (e.g. number of clusters), step 4) repeat step 1. In this case, it is necessary that a fair amount 
of data is annotated either through the experienced human annotators that can identify an outlier to the 
system either through the simulation of abnormal activity on the charging station. 

For the smart charging abuse scenario, three different evaluation methods will be applied in order to 
ensure high quality to the findings of the ML techniques. The applied evaluation methods will contain 
both qualitative (visual inspection, manual investigation) and quantitative metrics (accuracy, precision) 
offering a validation framework wide enough to cover different aspects of cybersecurity in the area of 
EV smart charging. More technical details on the validation methods are illustrated on the next 
subsection, where the validation methods are expressed through tables.      
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 EV Scheduling Abuse 

Each EV is equipped with a controller capable of communicating with an aggregator and performing 
simple computation tasks, like selecting the maximum possible charge snk during cheapest time slots 
following the method described earlier. The controllers are presumed as nodes of a tree graph where 
the root is the aggregator server. This architecture matches satisfying the physical system structure of 
a radial information router system. According to the proposed method the aggregator optimally selects 
the time step and broadcasts the corresponding information to the EV controllers. Each EV controller 
updates its charging profile and calculates snk which forwards either to the aggregator directly or the 
next car in the tree (Figure 56). In addition, in [92] a Proper Generalized Decomposition (PGD) approach 
was proposed (Figure 57) for solving the problem of minimizing the optimal EV charging problem with 
a converging at most O(1/k).  

The previous algorithm assumes that each EV controller would be able to update its charging profile 
according to the current control signal. However, this does not correspond to realistic circumstances 
since in practical charging scenarios the EV controller may not be able to update their charging profiles 
synchronously. The cause of this could be a failure in a communication link or delays caused by the 
calculation conducted in the EV controllers. In such scenarios the step size γκ has to be modified to 
guarantee the convergence of the Algorithm. This asynchronous variant ensures the proper functionality 
of the algorithm against random cyber delays which otherwise could lead to an EV scheduling abuse.  

The efficiency of the devised charging scheme will be verified by conducting a simulation including 52 
EVs each with a battery capacity of 24KWh and a maximum charging power fixed to 3.45kW. Moreover 
actual survey data [93] will be used for determining the EV plug-in and plug-out times as well as the 
daily travel miles. The expected state of charge (SOC) will be set for each vehicle to 90%. The Energy 
needed for 100km will be defined to E100 = 15kWh and the initial SOC will be calculated by the formula 
Sno = 0.9 – MnE100/ (100Bn) where Mn are the travel miles per day for vehicle n and Bn is the battery 
capacity of vehicle n. Normalized base load curves with base unity 1000kW will be acquired by 
averaging the 2014 residential load data from Southern California Edison [94]. The time horizon will be 
defined in the period between 12:00 pm and 12:00 pm the next day and it will be comprised of T = 96 
time slots.  During no EV scheduling, the EVs will be assumed to start charging as soon as they plug-
in and stop charging until they reach the desired SOC level. 

The experimental setup regarding the EV Scheduling Abuse will be performed in a simulated 
environment. 

Figure 56: Information flows for Synchronous Algorithm at iteration k≥1. Left: Aggregator 
broadcasts time slot ordering to EVs. Right: Summation of intermediate charging profiles are 

forwarded to aggregator 
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 Scenario Validation Overview 

Table 28 provides an overview summarising the algorithms used per scenario, their challenges and 
the associated metrics that are used to assess the algorithm's performance. 

Scenario Algorithms Challenges Metrics 

Smart charging 
abuse 

Z-score Application in n-
dimensional data 

Manual evaluation 

Density-based function Evaluation of the 
results 

Perplexity, coherence 

Isolation forest Training time Combination with 
supervises ML 
algorithms 

 
EV Scheduling 
Abuse 

 

Frank-Wolfe 

 

Projected gradient 
descent (PGD) 

 

 

Charging of even a 
penetration 10% of EV 
loads will cause 
voltage magnitude 
drop and unacceptable 
load peaks. 

 

Decentralized charging 
protocols for electric 
vehicles. 

 

Coping with cyber 
failures in the 
communication link 
between the 
aggregator and the 
vehicle controllers. 

Load curves 

 

Convergence 
performance of Frank-
Wolfe and PGD 
algorithms 

 

 

Table 28: Overview of Validation for Pillar 3 

Figure 57: Block Diagram describing optimal decentralized algorithm 
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The Smart Charging Abuse scenario can be summarized as shown in Table 29 listing the flow of the 
actions that will take place in the GreenFlux’s software in order to increase the cybersecurity of the 
charging stations and prevent potential cyber-threats. 

Scenario Name Smart Charging Abuse 

Related Use Case Electromobility 

Brief Description The attacker(s) occupy (physically or remotely) the available charging 
stations starting and proceed timely in connection/disconnection actions 
creating an enormous load to the electric grid. 

Challenges 1. Ability to detect the attack based on the recognition of anomalies in the 
pattern. 

2. Timely detection of the attack. 
 

 
Assumptions & 
Pre-Conditions 

1. We have collected data based on the “normal” behavior of the vehicle. 
2. There is successful monitoring of the charging stations. 

 

Goal (Successful 
End Condition) 

The attack has been recognized from the GreenFlux’s software and has 
informed both the security administrator and warns the owner of the vehicle 
about abnormal behavior. 

Involved Actors Malicious attacker 

Charging station 

GreenFlux Infrastructure 

Scenario Initiation The cyber-attacker(s) gain access to different charging stations. 

Novelty This is a scenario combining physical attack on a smart vehicle with anomaly 
detection algorithms. Its importance lies in its capability to combine V2X 
communication security with real-world attacks. 

The field of security electromobility is a very premature scientific area, 
therefore few (if any) studies have been applied on real data. The results of 
the scenario will be a significant outcome for both cybersecurity and 
electromobility communities.     

Main Flow 1. The cyber-attacker(s) gain access to charging stations. 

2. There is a synchronization intermittent energy demand.   

3. GreenFlux’s software recognizes the anomaly. 

4. GreenFlux automatically interrupts the electrical and data exchange with 
the specific charging stations. 

Evaluation Criteria GreenFlux’s software detects the attack and isolates the charging stations. 

GreenFlux’s software detects the attack in under 15 minutes. 

Table 29: Overview of the Smart Charging Abuse Scenario 

 

In a similar manner, Table 30 provides an overview of the measures that are being taken to set up a 
system capable of detecting the abuse of EV scheduling. The main challenge here is, with the available 
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data stream, to remotely detect an attack on connected charging infrastructure before damage can be 
done to the power system. 

 

Scenario Name EV Scheduling Abuse 

Related Use Case  Electromobility 

 
Brief Description 

With proper coordination scheme, EV loads can be controlled to minimize 
charging costs.  

Attacker(s) occupy (physically or remotely) the available charging stations. 
Uncoordinated charging of even a 10% penetration of EV loads will notably 
affect power system operation, giving rise to voltage magnitude fluctuations 
and unacceptable load peaks.  

Challenges 1. EV decentralized charging protocol 

2. Ensuring privacy of EV owners during charging 

3. Anomaly detection 

Assumptions & 
Pre-Conditions 

1. We have collected data based on the “normal” behaviour of the vehicle. 

2. Provided by GFX, Southern California Edison, IEEE 123-bus feeder 

Goal (Successful 
End Condition) 

EV decentralized charging has been succeeded, while preserving the privacy 
of EV owners and detecting anomalies 

Involved Actors Malicious attacker 

Charging station 

Scenario Initiation The cyber-attacker(s) gain access to different charging stations, and possibly 
disabling decentralized EV charging  

Novelty A decentralized charging method based on the Frank-Wolf algorithm 

The decentralized protocol requires communication only between 
neighbouring vehicles and preserves the privacy of EV owners. 

Main Flow 1. The cyber-attacker(s) gain access to charging stations. 

2. There is a synchronization intermittent energy demand.   

3. UPAT’s software recognizes the anomaly. 

4. UPAT’s software tries to detect anomalies, while decentralized charging is 
still operating efficiently 

Evaluation Criteria Load curves after the proposed charging protocol 

Convergence performance of proposed algorithm 

Table 30: Overview of the EV Scheduling Abuse Scenario 

4.7 Use of the Anti-Hacking Device 

In the electromobility scenario no anti-hacking device will be physically deployed in EVs as in the other 
use cases. Instead, we will take advantage of the simulated anti-hacking device devised for the 
development phase of the other use cases and deploy it on a cloud service in a virtualized environment. 



CARAMEL (No. 833611) D2.1 March 2020 

Page 102 of 117 
 

 

The anti-hacking device will take advantage of the advanced computing resources available in the cloud 
environment (eg. using data center GPUs or TPUs depending on the chosen cloud platform). 

Figure 58Figure 58 shows the familiar two machine learning phases in the electromobility scenario: 

• In a first phase data from the GreenFlux dataset is analysed using the methodologies described 
in the previous sessions in order to train and develop attack detection models. 

• The resulting attack and threat detection models are transferred to the anti-hacking device (here 
running as a cloud service). The anti-hacking is then fed test data containing normal and attack 
situations. The anti-hacking device will report attack situations appropriately (e.g., on an 
operator console). 

 

Figure 58: Use of anti-hacking device in electromobility use case 
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4.8 Functional Requirements 

Reg ID CRPL3-FR01 

Title Train on existing data 

Definition - 
Description 

The CARAMEL platform must be able to train on existing data 

Target WP 4 

Priority Mandatory 

How addressed The CARAMEL platform will provide a data management environment 
where (anonymized) historical loading data is stored. This data is used 
to train ML models. 

 

Reg ID CRPL3-FR02 

Title Smart charging simulation 

Definition - 
Description 

The CARAMEL platform must be able to simulate the behaviours of 
EVs that are (smart) charged and thereby generate synthetic data 

Target WP 4 

Priority Mandatory 

How addressed Part of the CARAMEL platform will be a simulation environment 
capable of generating synthetic charging data. In addition, there will be 
a module that injects false data into the data stream. The contaminated 
data will be used as input for a ML model. 

 

Reg ID CRPL3-FR03 

Title Anomaly detection in ChargeProfiles 

Definition - 
Description 

The CARAMEL platform must be able to detect anomalies in 
ChargeProfiles that are sent from GSOP to the ChargePoints when 
charging sessions are active. 

Target WP 4 

Priority Mandatory 

How addressed The CARAMEL project will provide a tool that is able to detect 
irregularities in loading profiles that are sent by GSOP via OCPP to a 
charging station. Since not all messages can be checked, a trade-off 
must be made between accuracy and responsiveness. 

 

Reg ID CRPL3-FR04 

Title Detection of physical attacks 

Definition - 
Description 

The CARAMEL platform must be able to detect physical attacks on 
charging infrastructure by recognizing incorrect or unexpected 
messages that are sent from a compromised charging station 

Target WP 4 

Priority Mandatory 

How addressed The CARAMEL project will provide a software tool that is able to detect 
if a charging station is physically attacked. If someone unobtrusively 
wants to take control of a charging station, they will have to keep 
sending messages to GSOP. It can be deduced from these messages 
whether they are sent by the charging point or are 'fake'. 
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5 Non-Functional Requirements  

 

There are two main important non-functional requirements in the overall CARAMEL activities, i.e. ethical 
related issues and data management and protection.   

The ethical aspects in the CARAMEL project are limited to potential interaction with data subjects as 
part of relevant research and in the use cases and in dealing with personal data in general. 

The project addresses them by: 

• An ethical assessment and an assessment if any of the planned activities require ethical opinion, 
authorization or confirmation; 

• An ethics report explaining the result of this exercise and providing all necessary documents; 

• A data management plan, which includes best practice approaches and policies to be 
implemented by the consortium. The data management plan is to be updated in iterations; 

• For any direct interaction with natural persons which require the collection of personal data, this 
will be justified, and any collection will be accompanied by a specific privacy notice and if based 
on consent a consent form, specifically drafted for the CARAMEL project by the partner 8BELLS. 

Data Management Plan (DMP) is a written formal document that describes how data will be handled 
until the completion of the project and after it. The Guidelines on FAIR Data Management in Horizon 
2020 [100] provide a set of principles and criteria that have to be addressed. Research data should 
become Findable, Accessible, Interoperable and Re-usable (FAIR). The CARAMEL DMP will describe 
in detail the data that the project will collect/generate, the methodologies and standards that will be 
followed to make research data FAIR, the data that will be shared/made open, and how they will be 
curated and preserved during and after the lifetime of the project. 

Data sharing in the open domain can be very beneficial to society, however, we need to balance 
openness on the one hand and protection of sensitive data on the other hand. As stated in the 
Guidelines on FAIR Data Management [100] data should be ‘as open as possible and as close as 
necessary’. All data providers that participate in the consortium should comply with all applicable data 
protection or similar laws regulating the processing of any personal data. 

CARMALE will provide a detailed plan of the mentioned non-functional requirements on D1.2 Ethics 
Framework and Data Management Plan. Agreed procedures and steps on D1.2 will be followed by all 
partners, securing the satisfactory achievement of the non-functional requirements of CARAMEL. The 
Ethics and Data Management Committee of CARAMEL (composed by 8Bells, T-SYS, PANA and 
chaired by the project coordinator) is responsible to monitor the defined framework under D1.2.        
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6 Conclusion  

D2.1 reports on detailed specification of CARAMEL use cases. The document was organized around 
three main pillars of the project, namely: autonomous vehicles, connected and cooperative cars, and 
electro mobility.  For each use case D2.1 provides an extensive overview of the scenarios that will be 
investigated and showcased by the project. Data collection and selection processes as well as the use 
of AI/ML solutions are important parts of this document. In addition, D2.1 determines the validation 
methodology for each CARAMEL scenario, i.e., whether simulation and/or demonstration activities will 
be executed depending on the characteristics of each use case.    

The Autonomous Mobility pillar classified the two main possible attacks as physical adversarial attacks 
and attacks on the vehicle’s camera sensor, the detection and overcoming of which can be achieved 
by the use of trained ML models.  For the Connected Mobility pillar, the project will examine three 
scenarios: location spoofing, V2X messages attack and physical tampering of the vehicle’s OBU. The 
first two will be addressed by employing AI/ML techniques, while the approach for the last one will be 
based on HW techniques. Finally, the Electromobility pillar examines the susceptibility to threats on the 
smart charging scenario, where AI/ML approaches will be implemented to secure the system.  

In addition to the presented material, CARAMEL also would like to include some extra cases under 
D2.1, especially regarding the urban mobility. In order to enhance the safety level, modern autonomous 
driving solutions running on urban and suburban environments build their environmental modelling part 
through combining multiple sources of information coming not only from the sensors on board and from 
the infrastructure, but also through embodying the footprint of occurrence of other agents as it is 
communicated through V2X. This approach attempts to approximate the safety aspect in an Internet of 
Things fashion, where each road user (vehicle/traffic sign/pedestrian) acts as a device broadcasting its 
status and seeking confirmation from the perception engines. ETSI EN 302 637-2 introduces this 
concept under the term cooperative awareness and assumes a unified fusion framework of building 
scene awareness by fusing scene elements observation through a multitude of sources, which are 
coming not only by the sensing modalities, thus being less vulnerable to weather and lighting conditions.  

As a result of the existence of the aforementioned techniques, CARAMEL considers that such 
cooperative awareness schemes could be subjected to cyber-attacks quite easily. Thus, the scenario 
could be investigated in case that the resources and the setup during the execution of WP4 of the 
project are sufficient. This particular direction is considered as an element of future extension as 
according to the consortium’s knowledge, ADAS solutions embodying cooperative awareness features 
have not been commercialized yet. It is worth to mention that this case will not be deeply 
investigated/demonstrated by the CARAMEL project.  

Figure 59 illustrates the concept of operating a Cooperative Awareness solution in autonomous driving.  

 

 

Figure 59: Autonomous Driving Solution Scheme approximated as in IoT 
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The scenarios described in this document were targeted by CARAMEL to assess the solutions 
proposed by the project to overcome the main cybersecurity issues for the autonomous and connected 
vehicles. They are a broad representation of the potential cyberattacks that the future mobility will 
experience.  
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Annex 1 

 

Model.CONNECT overview 

Model.CONNECT™ is AVL’s open model integration and co-simulation platform, connecting virtual and 
real components into one functional prototype. 

Vehicle development is a team effort. The key to mastering new development tasks is understanding 
the whole system early on in the process and using advanced simulation techniques in both the 
development and the testing phase. 

• How to efficiently manage development tasks such as RDE, Thermal Management, 
electrification or ADAS/AD? 

• How to link component models into one virtual prototype? 

• How to integrate hardware components with simulation models? 

• How to synchronize distributed development teams, while ensuring model sharing and IP 
protection? 

Model.CONNECT™ improves development efficiency by interlinking simulation models from different 
tools into one consistent virtual prototype, featuring: 

• Efficient integration of existing models (Simulink, AMESim, VTD, GT, IPG, MSC ADAMS, 
AVL…), industry standards (FMI, XCP…) and user code (Python, C/C++, Java…) 

• Exchangeability of models from different domains, across department and application 
boundaries 

• Accurate and fast results with unique coupling algorithms 

• Connecting co-simulation with real-time systems by using patented RT-synchronization 
technology 

As a part of AVL’s Open and Integrated Development Platform (IODP), Model.CONNECT™ empowers 
the implementation of model-based development, closing the gap between virtual and real worlds, with 
the following benefits: 

• Ready-to-use platform for building a digital twin in a heterogeneous model landscape 

• Better understanding of component interactions even during early development phases 

• Sustainable and secure collaboration between different departments and development partners 

• Shortening development iteration loops and improving testing efficiency by extensive usage of 
simulation methods in the testing environment 
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ADAS toolchain in Model.CONNECT 

This document describes the ADAS toolchain connected in AVL Model.CONNECT™.  

The Model.CONNECT project consist of following tools: 

1. AVL VSM 

2. Vires VTD 

3. AVL DRIVE 

4. MATLAB Simulink FMU  

5. Other components with smaller part 

The layout of the ADAS toolchain in Model.CONNECT is shown on Figure 60 

 

Figure 60: Model.CONNECT ADAS toolchain 

AVL VSM  

VSM is used to simulate vehicle dynamics. In this setup, it is useful to have a vehicle simulated in a 
single environment. For this purpose, a VSM installation example vehicle is used, mid-sized class 
vehicle. During the VSM integration in Model.CONNECT, the user has a possibility to use or exclude 
certain parts of the VSM vehicle.  

Figure 61 shows VSM components which are possible to include or exclude from VSM simulation.  
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Figure 61: VSM configuration in Model.CONNECT 

In this toolchain, Testrun and Ext. Driver Look Ahead are excluded since a vehicle environment is 
defined in VTD environment.  

It is worth noting that Longitudinal Driver is included in VSM simulation, although other 
Model.CONNECT components are providing signals like load and brake signal. Adjusting the certain 
flags during the simulation runtime, it is possible to bypass some of the VSM internal functions and 
implement functions from Model.CONNECT. 

Vires VTD 

VTD (Virtual Test Drive) is a simulation software for sensors and environment. VTD runs only on a Linux 
machine, so for co-simulation with VTD, a dedicated Linux machine or a virtual Linux machine is 
required. 

VTD provides environment and sensor readings. Environments consist of a road and its elements: 

• road marks 

• signs 

• vehicles 

• pedestrians, etc.  

 
This model uses two sensors: front sensor and GPS sensor. 

Front sensor is capable to detect maximum five objects and it will provide following information of an 
object: 

• type 

• distance 

• speed 

• position 
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• lane ID 

 

GPS sensor provides a location of a vehicle on the road. In order to use GPS sensor, an OpenStreetMap 
is imported into the VTD Road Scenario. 

Front and GPS sensor information are sent to the Model.CONNECT. Front sensor readings are used 
mainly for the ACC functionality, while GPS sensor data is used for the web interface and positioning 
the car on the OpenStreetMap. 

A nice feature of the VTD is a video of the running simulation, as shown on the Figure 62 and Figure 
63. 

 

Figure 62: VSM vehicle simulation in testbed mode 

 

Figure 63: VTD simulation video 
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AVL DRIVE 

Drive is a software for driveability score (see Figure 64). It scores the vehicle movements like 
acceleration, deceleration, gear shift, constant speed, vehicle stop, constant speed. 

The score has a range from 0 to 10, where 10 means the comfort and safety are achieved in the best 
possible way. 

 

Figure 64: AVL DRIVE 

 

 MATLAB Simulink FMU for ACC 

A Simulink ACC controller model is compiled as an FMU using the AVL fmi.Lab software.  

The benefit of using Simulink FMU instead of the native Simulink models are: 

• faster run of the model 

• a MATLAB license is not required for the run 

 

The downside is that FMU is a black box and the user can’t see into the model. On the other hand, it’s 
possible to expose parameters of the Simulink model which can be used and modified from 
Model.CONNECT. 

 

Web interface 

This model has a web user interface. A FMU is used for communication with the web page.  

The UI is shown on the Figure 65. 
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Figure 65: Web UI 

The user can enable or disable ACC functionality, set ACC vehicle speed, change lanes, observe 
vehicle velocity and engine speed, and vehicle position. 

Additionally, the user has a possibility to override all driver signals to drive the vehicle with the 
tablet/mobile movement. E.g., leaning tablet forward will increase load signal, leaning backward will 
activate brakes, and leaning left and right will rotate the vehicle steering wheel. 

 

Data flow 

Figure 66 shows the principle data flow. VSM provides the vehicle dynamics to the VTD, so VTD can 
place car on the exact position on the road. Also, VSM send the information of the vehicle state to the 
AVL DRIVE, ACC controller, WebSocket controls. 

ACC controller receives sensor data from VTD (object around the vehicle), desired velocity from web 
user interface, and actual vehicle velocity from VSM. Based on this information, ACC will calculate the 
load and brake signal and send it to the VSM vehicle pedals. 

AVL DRIVE in only on the receiving side, in order to calculate driveability score. 

Additionally, a Weather component can be found on the system topology. It serves to send SCP 
commands to the VTD environment and change the weather. 
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Figure 66: Information exchange flow 
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