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Executive Summary 
 

CARAMEL ’Artificial Intelligence based cybersecurity for connected and automated vehicles’ 

 

H2020 CARAMEL project comes to an end after a journey of 33 months where all the partners involved 
worked together with the main same objective, the development of a more secure driving experience 
for the connected and automated vehicles. 

CARAMEL’s goal was - and is - to proactively address modern vehicle cybersecurity challenges by 
applying advanced Artificial Intelligence (AI) and ML techniques, and to continuously seek methods to 
mitigate associated safety risks. So, CARAMEL intended to follow an automotive cybersecurity layered 
approach that deals with attestation of vehicular hardware, software, and network infrastructures.  

From the beginning, CARAMEL was explained using the three innovation pillars (family of use cases) 
which represents: 

Pillar 1: The autonomous vehicle.  

Pillar 2: The connected vehicle. 

Pillar 3: The plug-in electrical vehicle. 

 

With this, the objective of this deliverable is to evaluate the CARAMEL solutions effectiveness 
developed, using different use cases scenarios as “actions” to represent possible attacks chosen by 
each partner according to their developments and expertise areas.  

These use cases have been selected from the deliverable “D2.4_ System Specification and Architecture 
“, - where the use cases were introduced as possible keys for CARAMEL within the WP2 of the project- 
and have been performed in a real / test environment or in a simulation test. 

The final demonstration took place in the PANASONIC Automotive premises in Langen (Germany) on 
June 20th-21st, and the results and observations extracted from there, can be found within this 
deliverable, inside each partner's contributions following the structure of the three innovation pillars. 

In addition, it can be read at the end of the deliverable, a Roadmap for future evolution of the CARAMEL 
achievements, opening the door to see “where CARAMEL can/could be directed to” and a Conclusions 
chapter, with the aim to summarize all the important notes and lessons learned detected during the 
performance of the project. 
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1 Introduction and Project Overview 

As already introduced in previous deliverables, the Cooperative Connected and Automated Mobility 
(CCAM) is increasing nowadays and with the idea to be the future of the automotive industry.  

Due to this and to its high technology and connectivity dependance, protections against cyberattacks 
are in the scope of the industry to develop solutions as a top-level protection to avoid any kind of access 
to the autonomous and connected vehicles (attacks which could be both physical and remote). 

CARAMEL’s goal is to proactively address modern vehicle cybersecurity challenges through applying 
advanced Artificial Intelligence (AI) and Machine Learning (ML) techniques, and to continuously seek 
methods to mitigate associated safety risks. 

1.1 Document Scope 

Deliverable D6.3 will report on the description and assessment of scenario driven attacks, through the 
implemented use cases. It will also contain an overall assessment of the project results, as well as a 
roadmap for the future evolution of the CARAMEL achievements. 

The objective of this document is to evaluate the CARAMEL solution, as per the specifications of Work 
Package 2 (WP2) specified use case. The scenarios described in every Use Case (UC) in WP2 will be 
implemented accomplishing end-to-end communication. Technology providers, integrators, and end-
users will get engaged in the task ensuring the successful deployment and reaction of the system.  

More specifically: 

● UC1 - Autonomous Mobility, the physical adversarial attacks, and the attack on the camera 
sensor scenarios will be deployed testing the capabilities and the limits of the autonomous 
mobility. 

● UC2 – Connected Mobility, the location spoofing attack, the attack on the V2X message 
transmission. and the tamper attack on the vehicle's OBU will be executed revealing the 
resilience of the system in terms of communication. 

● UC3 – Electromobility, the smart charging abuse, and the EV scheduling abuse scenarios will 
be implemented by checking CARAMEL’s system reactions while analyzing potential threats in 
the power system. 

1.2 Scenarios and Actors Overviews 

Table 1 and Table 2 provide an overview of all the use cases and actors identified in CARAMEL’s 
deliverable D2.4 (under the title “System Specification and Architecture”) delivered in WP2 (Work 
Package 2): 

ID Use case name Description 

UC1.1  Detection of physical attacks on traffic 
signs  

The scenario deals with two kinds of attack: attacker 
vandalizes traffic signs (i.e., some random graffiti that 
hides a different part of the sign or a coordinated 
attack such as generating ML based image to cover 
the signs.  
The autonomous vehicle moves in the test area. 
Certain traffic signs have been physically modified in 
order to influence the driving behaviour and planning 
of the autonomous vehicle. CARAMEL’s platform is 
operating in parallel to the driving system of the 
autonomous vehicle without influencing the decision-
making module. When the vision-related sensor and 
the ML components of CARAMEL detect a physical 
attack, a corresponding notification will be displayed to 
the vehicle operator or passenger.  

UC1.1.1  Simulated detection of attacks on 
traffic signs  

Show and test the scenario “Detection of Attacks on 
Traffic Signs” in a simulated environment.  
 

UC1.1.1.1  Creation of defaced traffic signs  Creation of defaced traffic signs.  
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UC1.1.1.2  Creation of labeled training data from 
simulation  

Creation of labelled training data from simulation.  

UC1.1.1.3  Creation of model from training data  Creation of model from training data.  

UC1.1.1.4  Test of model in simulation 
environment  

Test of model in simulation environment.  

UC1.1.1.5  Signaling of attack events  Signaling of attack events (defaced traffic sign 
encountered).  
 

UC1.2  Adversarial attacks on camera sensor  The autonomous vehicle is expected to drive from a 
starting location to a given destination following a 
specified path. At a given time instance the image of 
the vehicle will be tampered through a specific 
perturbation intended to cause the perception module 
to misbehave (e.g., either detect objects that are not 
truly present or hide objects that are within the field of 
view).  
The autonomous vehicle is expected to drive from a 
starting location to a given destination following a 
specified path. At a given time instance the image of 
the vehicle will be tampered through a specific 
perturbation intended to cause the perception module 
to misbehave (e.g., either detect objects that are not 
truly present or hide objects that are within the field of 
view).  
 

UC1.2.1  Simulated adversarial attacks on 
camera sensor  

Show and test the scenario “Adversarial Attacks on 
Camera Sensor” in a simulated environment. 
  

UC1.2.1.1  Design of AI and ML-based attacks   
  

Design of AI and ML-based attacks.  

UC1.2.1.2  Design of AI and ML-based attack 
detectors  

Design of AI and ML-based attack detectors.  

UC1.2.1.3  Design of multi-modal fusion-based 
attack detectors  

Design of multi-modal fusion-based attack detectors.  

UC1.2.1.4  Test of model in simulation 
environment  

Test of model in simulation environment (eg. CARLA 
simulator with attached anti-hacking device).  

UC1.2.1.5  Design and setup of simulation 
environment  

Design and setup of simulation environment (CARLA 
simulator and anti-hacking device).  

UC1.2.2  Real-world demonstration of 
adversarial attacks on camera sensor  

Real-world demonstration of adversarial attacks on 
camera sensor.  

UC1.2.2.1  Transfer of multi-model fusion model 
to real car  

Transfer of multi-modal fusion model to real car.  

UC1.2.2.2  Test of model with real car in test 
environment  

Test of model with real car in test environment.  

UC2.1  Location spoofing attack  Using SDR hardware, the attacker is able to spoof 
GPS satellite signals. The vehicle relies on a second 
location stream to identify a possible GPS location 
spoofing attack, based on vehicle’s movement 
description, IMU and GPS-free localization 
measurements.  

UC2.1.1  Simulated location spoofing attack  Simulated location spoofing attack.  

UC2.1.1.1  Setup of simulation environment  Setup of simulation environment.  

UC2.1.1.2  Creation of labeled training data  Creation of labelled training data.  

UC2.1.1.3  Design and implement real-time fusion 
of multiple sensors to detect attack  

Design and implement real-time fusion of multiple 
sensors to detect attack.  

UC2.1.1.4  Test model in simulation environment  Test of model in simulation environment.  

UC2.1.2  Location spoofing attack with real car  Location spoofing attack with real car.  

UC2.1.3  GPS spoofing alert to MEC  Send GPS spoofing alert to MEC.  

UC2.2  Attack on the V2X message 
transmission  

There are two different kinds of attacks: a) A malicious 
attacker transmits fake CAM and DENM messages 
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and b) a malicious attacker tries to track a specific 
vehicle.  

UC2.2.1  Generation of fake messages  Generation of fake messages.  

UC2.2.2  Sniff and Replay Messages of 
Compliant Vehicles  

Detection of replayed messages.  

UC2.2.3  Messages sent by a compliant vehicle 
with a fraudulent identity  

Detection of messages with faked/fraudulent identity.  

UC2.2.4  Tracking of vehicles by sniffing sent 
messages  

The anti-hacking device generates new Authorization 
Tickets (AT) such that an attack on the privacy of the 
driver of the cooperative vehicle is not successful.  

UC2.2.5  Demonstration of attack on V2X 
message transmission  

The attacks on the V2X message transmission are 
performed in a real car, the anti-hacking device detects 
these attacks.  

UC2.2.6  Fake message detection alert to MEC  Alerts about the detection of fake messages are 
relayed to the MEC or detected by the MEC.  

UC2.2.7  Integration of Anti-Hacking Device  Integration of anti-hacking device into test car.  

UC2.2.8  Regulatory Approval for Mobile 
Network Use  

For the setup of the LTE small cells regulatory 
approval is needed by the German Agency for 
networks (RegTP).  

UC2.2.9  Setup of MEC Devices  Setup of MEC devices for test and development.  

UC2.3  Tamper attack on vehicle's OBU  The attacker is able to get physical access to an OBU 
by accessing the car. The attacker could also have 
acquired another OBU (e.g., aftermarket sample) in 
order to study potential vulnerabilities beforehand.  

UC2.3.1  Physical attack on OBU  Attacker performs physical attacks on the OBU.  

UC2.3.2  HW tamper detection  The OBU detects physical attacks on its hardware.  

UC2.3.3  Tamper alert to MEC  The MEC is alerted by the OBU about the physical 
attack.  

UC2.4  Certificate Revocation  Revoke vehicle certificate.  

UC2.4.1  Revocation of Vehicle Certificates  Revoke vehicle certificate.  

UC2.4.2  Publication of Certificate Revocation 
Lists  

Publication of certificate revocation lists.  

UC3.1  Smart charging abuse  The attacker(s) occupy (physically or remotely) the 
available charging stations starting and proceed timely 
in connection/disconnection actions creating an 
enormous load to the electric grid.  

UC3.1.1  Abuse detection model creation  Abuse detection model creation for the smart charging 
abuse scenario.  

UC3.1.2  Attack detection demonstration  In this use the smart charging abuse attack detection 
is demonstrated.  

UC3.1.3  Anonymization of raw data  The original CDR data is anonymized for privacy 
reasons and GDPR compliance.  

UC3.1.4  Preprocessing of data  The data is pre-processed to removed outliers and 
perform other necessary steps before ML training.  

UC3.1.5  Selection of ML algorithms and 
parameters  

The algorithms and parameters for successful training 
of the model are selected.  

UC3.1.6  Application of abuse detection model  The abuse detection model is applied in the anti-
hacking device (or service).  

UC3.1.7  Perform attack  The attacker performs the smart charging abuse 
attack.  

UC3.1.8  Setup of charging stations  Setup the charging stations for use in development 
and testing.  

UC3.1.9  Signaling of attack events  Attack events are signalled to the SOC/Backend.  

UC3.2  EV scheduling abuse  With proper coordination scheme, EV loads can be 
controlled to minimize charging costs.  
Attacker(s) occupy (physically or remotely) the 
available charging stations. Uncoordinated charging of 
even a 10% penetration of EV loads will notably affect 
power system operation, giving rise to voltage 
magnitude fluctuations and unacceptable load peaks.  

UC3.2.1  Attack detection demonstration  In this use the EV scheduling abuse attack detection is 
demonstrated.  
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UC3.2.2  Application of Frank-Wolf algorithms  Application of the Frank-Wolf algorithm in the anti-
hacking device.  

UC3.2.3  Perform Attack  The attacker performs the smart charging abuse 
attack.  

UC3.2.4  Setup of charging station  Setup the charging stations for use in development 
and testing.  

UC3.2.5  Signaling of attack events  Attack events are signalled to the SOC/Backend.  

Table 1: Use case overview. 

 

Name Stereotype Description 

Vehicle operator Person A person responsible to operate the vehicle in the case of a not fully automated 
one, monitoring the environment and the vehicle behavior. They are responsible 
for receiving notifications from the CARAMEL platform and taking the necessary 
actions to react to attacks. 

Passenger Person A passenger of the car not responsible for any interaction with the car's steering. 

Attacker Person Bad actor intent on disturbing the normal operation of vehicles or the traffic or 
charging infrastructure in general (such as road side units, charging backend 
infrastructure, chargers). The attacker might also physically attack objects such 
as traffic signs or lane markers in order to cause autonomous or semi-
autonomous driving systems to malfunction. 

Data scientist Person Engineer trained creating and testing machine learning models from training 
data. 

Simulation 
designer 

Person Designer capable of creating or changing virtual worlds and artifacts (such as 
traffic signs) in a simulation environment. 

Simulation 
operator 

Person Engineer able to set up, maintain, and operate a simulation environment. 

Automotive 
engineer 

Person The automotive engineer is able to integrate physical components such as 
sensors or the anti-hacking device into a car to create a demonstration and test 
setup. In addition, the automotive engineer can set up and configure other 
required infrastructure in a test, e.g. MEC, LTE, WIFI, Charging Point, etc. 

Cooperative car System V2X communication-enabled car. This type of car is able to communicate with 
other cars and infrastructure to transmit relevant data such as position, speed, 
etc. 

Fixed 
infrastructure 

System Infrastructure to support connected driving, consisting of eNB (C-V2X base 
stations), RSU (IEEE uo2.11p fixed station), PKI servers, or MEC (multi-access 
edge computing node). 

Outside 
infrastructure 

System Infrastructure such as public parking, a workshop, or private parking not 
specifically set up for the project. 

MEC System Multi-access edge computing device - the Multi-access Edge Computing (MEC) 
server will be deployed to accommodate the required functions to run at the 
edge of the network, following, as much as possible, the ETSI MEC framework 
standardization. 

Anti-hacking 
device 

System The anti-hacking device is a physical controller that is integrated into the car and 
acts as an attack detection device. In the Autonomous Mobility scenario its task 
is to run pre-trained ML models that work on the sensor data to detect anomalies 
that might point to malicious attacks. Additionally, the anti- hacking solution 
might be used for different functions in the context of the CARAMEL project, i.e. 
if needed it can ensure security for an embedded application platform. In this 
case, the software layer of the solution might be employed only. 
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PKI 
infrastructure 

System The PKI infrastructure is the enabler to provide security to V2X message 
transmissions and will be the basis to build and test the “Attack on the V2X 
message transmission” scenario. 

Charging point 
infrastructure 
(CPI) 

System Charge Points are devices where EVs get charged. Each CP contains at least 
one meter per socket (MID meter) owned and controlled by the CPO. This CPO 
meter is connected to the energy socket through which the EV gets charged and 
is used to measure the energy consumed by the EV. Each CP also includes a 
local controller (LC) with a connection (e.g.: GPRS or wire connection) to the 
back-office of the CPO. Among other things (e.g.: remote updates), such a 
connection is used to authenticate the customer (EV owner) at the CPO. 

Charging point 
operator (CPO) 

System The CPO is responsible for the management, maintenance and operation of the 
charging stations (both technical and administrative). The role of CPO can be 
segmented into: 1. Responsibility for administrative operation (e.g. access, 
roaming, billing to eMSP etc.) and 2. Responsibility for technical maintenance, 
which is often done by the manufacturer. CPOs play a very important role in the 
EV market as they are responsible for bridging the gap between the entities 

eMSP System An eMSP (electroMobility Service Provider) is a market role that offers charging 
services to EV drivers. An eMSP provides value by enabling access to a variety 
of charge points around a geographic area, usually in the form of a charge card. 
This means the EMSP is responsible to set up contracts with customers (owners 
of EV cars) and for managing customer information and billing. 

Electric vehicle 
(EV) 

System Electric vehicle that is charged using the charging points. 

Distribution 
system operator 
(DSO) 

System The distribution system operator (DSO) manages the electrical grid. The DSO 
does not produce any electric power but does however ensure that it is 
transported from the power station to the place where it is needed. The most 
important task of the DSO is to maintain a stable, reliable and well-functioning 
electricity network. 

ESOP System Electromobility Services and Operations Provider – GreenFlux in the project. 
GreenFlux provides a white-label cloud-based SaaS Service and Operations 
Platform which allows both CPOs and eMSP to run their EV charging business. 

Simulation 
Environment 

System CARLA or AVL ModelConnect/VTD simulation environment. 

Onboard unit 
(OBU) 

System The onboard unit is a microcontroller built into the vehicle that performs functions 
to support the operation (steering etc.) of the car as well as the communication 
with the outside world via V2X protocols. A typical may contain many OBUs with 
different functions that are connected via local communication links (eg. the CAN 
bus). 

Hardware 
Security Module 
(HSM) 

System Hardware element brought into a microcontroller to support the detection and 
avoidance of manipulation of the integrity of the device by providing or enabling 
functions such as tamper detection, secure boot, etc. 

SOC/Backend System Security Operation Center (SOC) or Backend run by the CARAMEL project to 
visualize the overall threat situation during the demos or trials. 

MAP System ML/AI Algorithms provider (e.g., UPAT in the context of the project) 

Project 
Administrator 

Person Person responsible for administrative tasks in the CARAMEL project. 

Table 2: Actors overview. 
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2 Pillar 1 scenario driven attacks 

In Caramel, we investigate the potential and limitations of the Cyber-attack detection and mitigation 
engine via investigating its efficiency in restoring the attacks either on sensor layer (models developed 
on WP3) or at perception layers (models developed in WP4). 

2.1 Physical Adversarial Attack on Traffic Signs (Physical Layers):  

As described in D2.1 deliverable, the physical adversarial attack use case deals with the attack on the 
external environment of Connected and Autonomous Vehicles (CAVs). The aim of the use case is to 
demonstrate the effect of the physical adversarial attack in the environment and mitigation strategies 
for such attacks. The use case involves the attacks which can be easily performed in the real-world 
without direct access to the CAVs system and only minimal information about the CAVs is required for 
such attacks. In this case, it is assumed that CAVs use a perception engine to navigate the environment. 
Likewise, we choose the traffic signs as our attack point to demonstrate the use case.  Since the traffic 
signs are a crucial aspect of traffic management, misreading the traffic signs can result in devastating 
outcomes. Hence, the use case provides realistic real-world scenarios. The overview of the use case is 
shown in Figure 1.  

  

Figure 1: The overview of the Use case - Physical Adversarial Attack on traffic signs. 

 

The use deals with two types of scenarios as described in D2.1 (Table 3):  

Title Description Solution Developed for CARAMEL 

Detection and 
reaction to 
physical attacks 
on traffic signs 

The use case explores the state-of-the-
art anomaly detection approaches to 
develop traffic signs anomaly detection.     
 
 

Based on the various state-of-the-art research, a 
Deep Neural Network (DNNs) model has been 
developed to detect traffic sign anomalies. The 
models are portable in nature and have been 
implemented in anti-hacking devices such as Jetson 
AGX and nano.  
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Robustness to 
physical attacks 
on traffic signs 

In addition, it examines the mitigation 
strategies for physical attacks to improve 
the robustness of the CAVs pipeline.  
 
 
     

To improve the robustness to physical adversarial 
attack, additional DNNs model has been developed 
using techniques such as GAN (Generative 
Adversarial Networks) and autoencoder. This 
enables the model to generate meta-traffic signs 
which are anomalies free.  

Table 3: Brief overview of proposed sub-use cases in Physical adversarial attack use case. 

For the above use cases, following research and development were carried out in the CARAMEL 
project.  

1. Research and develop anomaly detection methods using state-of-the-art techniques such as 
Deep Neural Networks (DNNs).  

2. Develop an additional Deep Neural Networks (DNNs) for the mitigation purpose.  
3. Generate traffic sign attacks dataset for training and testing purposes.  
4. Develop a traffic sign pipeline integrating all the components such as DNNs models, anti-

hacking device as well as backend.  
5. Extensive testing on the robustness of the developed models.  

2.1.1. Pipeline Demonstration  

2.1.1.1. Introduction 

For the physical adversarial attack use case, the demo is laid out according to Figure 2. In Figure 2, two 
types of inputs are set up and they are manual and automatic.  

In manual input, a human can control the cars in the environment whereas automatic input 
autonomously drives the car. The server-side pipeline runs in the PC and consist of a Virtual city (i.e., 
Carla Simulator) as well as Deep Neural Network (DNN) for traffic sign detection and localization. Nvidia 
Jetson AGX has been selected as an anti-hacking device. It contains the anomaly detection and 
robustification DNNs models developed for the CARAMEL project. The models are available in both 
docker as well as in native format. The backend is a cloud system developed for centralized data 
collection and visualization by our partners.  

 

Figure 2: The overview of the traffic sign anomaly and mitigation pipeline for the demonstration purpose. 

 

2.1.1.2. Virtual Environment  

For the demonstration purpose, we choose the virtual environment to show the full extent of physical 
adversarial attack use cases. The virtual environment provides a wider range of flexibility in terms of 
dramatic changes in environmental elements such as lights, weather, location in a short period. We 
utilized an open-source Car simulator called CARLA simulator [1]. We developed a virtual city which 
includes multi types of traffic signs with various attack patterns such as graffiti, noise as Gaussian, salt 
and pepper, etc. Please refer to the D4.2 report for detailed information about the attack types.  In 
addition, environmental elements such as weather, time (day/night) can easily be modified with the help 
of a keyboard. 
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Figure 3: (Right) The top-down view of the Virtual city designed for Physical adversarial attack use case. (Left) 
Screenshot of various weather and time. 

 

Figure 3 shows the top-down view of a virtual town which was designed and developed for the use case. 
The Town consists of varieties of scenarios such as countryside (sections with forests) while it also 
incorporates the urban aspect of the city such as houses, traffic lights etc. In addition, Figure 3 also 
highlights small samples of weather varieties and time on the right column.  

 

2.1.1.3. Deep Neural Network (DNNs) Models 

Two types of Deep Neural Networks were designed and developed for the use case, which are the 
anomaly detection model and robustification model. Additional two models were also utilized for traffic 
sign localization as well as traffic sign recognition. Since the traffic sign localisation was out of the project 
scope, we used SSD MobileNet v2 [2] and developed in house traffic sign recognition models.  The 
models were designed using real and synthetic data. However, for the demonstration purpose, we only 
focus on the model trained on synthetic data (detailed information in D4.2).  

To train and test the models, we developed a pipeline to generate synthetic data from Carla simulator 
[1]. The synthetic data generation pipeline captures highly accurate annotation for traffic sign detection 
and classification purposes (refer to D4.2 for more information).  Figure 4 shows the overall view of the 
various Deep Neural Networks and their connections. Majority of developed models run in anti-hacking 
devices except the third-party traffic sign detection model.     

 

Figure 4: An overview of the anomaly detection and mitigation pipeline. 
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2.1.1.4. Use case test setup 

The physical adversarial attack use case will be demonstrated based on the use case description on 
D2.4 (UC1.1). The scenario focuses on demonstrating the two sub-use cases described in Table 3 and 
overview of the test setup was visualized in Figure 1.   

As already shown in Figure 1, the autonomous vehicle has a pre-planned destination and travels from 
start to end point. While performing the task, the vehicle needs to follow the traffic rules including 
detecting the traffic signs as well as following the signs. In normal scenarios, the vehicle should have 
no problem reaching the destination and should follow the green path. However, in above scenarios, 
the traffic sign has been attacked and the vehicle might not understand the instructions and possibly 
misread the signs. Numerous abnormal behaviors can occur due to such attacks. However, the red path 
are some examples of alternative routes that a vehicle might take in this situation. Hence, mitigation 
strategies should be in place to accommodate the scenarios.  To that end, in D4.2, we developed a 
Deep Neural Network (DNNs) model to detect anomalies in traffic signs and an additional model to 
reconstruct the meta-traffic signs free of anomalies. The aim is to enable the autonomous vehicles to 
alert the backend system about possible traffic signs attack as well as reach the end destination by 
recognizing the anomalies. In this case, the blue path represents the path an autonomous vehicle might 
take when identities the attack.  

 

 

Figure 5: Use case diagram of simulated detection of attacks on traffic signs.  

 

The Figure 5 shows the detailed use case of simulated detection of attacks on traffic signs and the 
following Table 4 describes the use case: 

Title Description 

Purpose Demonstrate the physical adversarial attack on traffic sign in a simulated environment 

Prerequisites A simulation environment, anti-hacking device. 

Involved actors ● Simulation Operator 
● Simulation Designer 
● Data Scientist  
● SOC/Backend 
● Anti-hacking device 
● Simulation Environment 

Flow of activities 1. A simulation designer creates attacked traffic signs in the simulated 3D 
environment (e.g., in CARLA simulator). 

2. A data scientist generates a large quantity of the labelled data from a simulated 
environment.  

3. A data scientist designs and develops the Deep Neural Networks (DNNs) 
models to detect attacked traffic signs using generated data.  
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4. A simulator operator starts the test of the DNNs models in the simulation 
environment. The models will be running in the anti-hacking device.  

5. The anti-hacking device sends information about attack events if the simulated 
vehicle encounters attacked traffic signs.      

Success end 
condition 

Attack event is signaled. 

Table 4: Use case description. 

 

2.2 Cyber-Attack Detection and Mitigation at the Camera Sensor 
(Signal Layer) 

Our experiment considers images extracted from various videos captured at diverse weathering, lighting 
conditions and velocity ranges in areas including supermarkets, office with angle, parallel and 
perpendicular parking scenarios. The vehicle platform used for data collection is illustrated in Figure 6. 

 

Figure 6: Picture of our ego-vehicle with sensors mounted.  

 

Each raw image (width 1280 and height 960) is attacked by noise, which are then used as inputs for 
our denoised models. The parameters for denoising models are tuned to generate a noise free image. 
And secondly, this denoised image is being fed to our computer vision algorithm to analyze the variation 
in output.   

 

Figure 7: First Experimental Setup.  

2.2.1 Vehicle Setup 

Due to the required safety of manoeuvres of autonomous vehicles, these vehicles require a high 
precision perception of their surrounding environment. All the possible information ranging from the 
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details of motions of used ego vehicle to the motion of surrounding pedestrians can lead the vehicle to 
make an optimal decision at the right time to avoid any collision. This level of safety confidence can be 
just archived using an optimal fusion between the collected information of various mounted sensors on 
the vehicle.  

In this section a short description of mounted sensors on Panasonic Automotive Systems Europe 
(PASEU) automated vehicle is introduced. The proposed system is a vision-based autonomous system 
including several components as explain below: 

Cameras: four wide angle (“fish-eye”) (30 frame/sec with a 190º field of view) cameras which are 
mounted on the side mirrors, the front, and rear bumper of the test vehicle to detect the free spaces and 
obstacle around the vehicle simultaneously. The detailed specifications of the used cameras are as 
shown in Table 5: 

 

Parameter Information-Size 

Sensor Model Sony ISX016 

Image Format Parallel Output YUV422 

Serializer Model FPD Link-Ⅲ 

Effective Area H：1296×V：976 

Output Resolution H：1280×V：960 (Cropping) 

Frame rate 30 (Frame/S) 

Data logging 54 (MB/S) 

Table 5: Technical specifications of PASEU cameras. 

 

Sonars: sonar sensors (10 Hz low range up to 6 m) in front, rear, left, and right of the vehicle to collect 
additional data about the close object-obstacle to the vehicle. 

Velodyne LiDAR Sensor: for the further validation of the performance of the vision-based parking 
system a 360-degree laser scanner is used. In recent modern “level five” of autonomous vehicles (e.g., 
Google car), LiDAR sensors are mainly used to collect the information of the surrounding area to feed 
the perception sections. Lidar technology is still in its infancy, and cost-effective sensors are not yet 
readily available on the market. In the Panasonic driving platform, scanning lidars are therefore only 
used for validation. The technical specification of the used sensor is as shown in Table 6: 

Parameter Information-Size 

Sensor Model HDL-32E 

Number of Channels 32Up to 100(m) 

Range Accuracy  Up to ±2(cm) 

Field of View (Vertical) +10.67 to -30.67 (41.33) (Deg) 

Angular Resolution (Vertical): 1.33 (Deg) 

Field of View (Horizontal) 360 (Deg) 

Angular Resolution (Horizontal/Azimuth) 0.1 – 0.4 (Deg) 

Rotation Rate 5 – 20 (Hz) 

Table 6: Technical specifications of the used laser scanner in PASEU. 

 

Differential GPS and its internal Inertial Measurement Unit (IMU): the position of the vehicle can be 
measure precisely at each position using an Applanix Differential GPS (DGPS). The precise position pf 
the vehicle with the captured information of the surrounding of the vehicle helps the autonomous system 
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to ensure the performance of other mounted sensors due to the accurate collected ground truth. The 
accuracy of the used DGPS sensor is as below (Table 7):  

Parameter DGPS With Post Processing 

Position (m) 0.3-0.5 0.02-0.05 

Roll/Pitch (Deg) 0.015 0.015 

Heading (Deg) 0.02 0.02 

Table 7: Technical specifications of the mounted DGPS sensor on the test vehicle of PASEU. 

 

Vehicle network: the related information and collected data from the vehicle are transferred to each 
component of the system via a local CAN and FlexRay system of the vehicle. This internal information 
regarding each vehicle motion is updated as follows (Table 8): 

Parameter Update frequency (ms) 

Steering wheel position 20  

Gear position 5 

Rack position 20 

Wheels rotation counter 20 

Wheels speed 20 

Blinker information 10 

Table 8: FlexRay messages and their update frequencies in PASEU test vehicle. 

 

Data logger: All the captured data of used sensors are stored on the onboard car-pc of the vehicle. 
Regarding syncing the data together, currently the live capture engine (Win7 64-bit with Intel(R) Xeon(R) 
CPU 3.50 (GHz) processor) which is responsible for data logging considers the time stamp of receiving 
the data (e.g., from each Camera) on the PC and store them accordingly. The logger does not consider 
the capture time stamp of the data itself. 

When the data logger receives a new data, it assigns a timestamp to it from a global time stamp service 
that is starting from 0.00000 second and is always incrementing. 

Ego vehicle: in the automotive industry ego vehicle term is mainly used to refer to the test vehicle which 
is manipulating the requested tasks. In our system, the whole APS system is mounted on a test vehicle: 
Mercedes Benz C-Class 2014 (S204). 

2.2.2 Scenarios of the Attacks 

The demo scenarios executed as part of pillar 1 demonstrations involve a malicious user holding a 
remote control through which it attacks to the sensors data, disturbing both the quality of the sensor 
signal and the timestamps of the data recorded. As illustrated in Figure 8, the scene is interpreted in an 
undistorted way in the right-hand side, while the scene understanding is significantly degraded when 
the malicious intervention occurs between the scene and the perception engine (shown in the bottom 
right). 
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Figure 8: Schematic representation of the attack performed on the real vehicle. A malicious user attacks to the 
sensor data. Scene perception disturbance is illustrated on the bottom right.  

 

The types and the scenarios of the attacks were defined in D2.2 deliverable contributed by Caramel’s consortium 
at the beginning of the project and is also presented in Table 9 below. 

 

Use Cases - Pillar 1 

1 Attack on the Camera Sensor Layer: This scenario would involve a cyber-attack based on 
activating some malicious software which got installed during the software update process. 
Throughout this use-case the camera sensor could be attacked in a few different ways, which 
could vary between adding noise lying on specific bands of the frequency spectrum/ introducing 
morphological deformations/ on the whole or parts of the image. 

2 Attack on the Camera Sensor Layer by de-synchronizing the data: Throughout this scenario, 
the cyber-attack will be geared towards disturbing the association between the captured frames 
and the timestamp assigned to them. This will cause the failure of the perception engine, as all 
the architectural modules performing stochastic filtering on the scene observations will be 
affected by error. This use case should study the potential and the limitations of the cyber-
attack detection and mitigation engine in assessing and recovering the failures. 

3 Attack on the Camera Sensor by a remote agent: In addition to the aforementioned scenario, 
the cyber-attack detection and mitigation engine will be used to detect and mitigate the camera 
signal distortion in the case that a malicious remote agent interferes with the test vehicle by 
knowing the IP of the processing unit and sharing some erroneous data. More specifically, this 
use case will assume that the remote agent sends via V2X communication: time zone/ daylight 
related data in order some sensor parameters (e.g., gain/exposure time) to be tuned 
accordingly. 

Table 9: Attack scenarios for the real vehicle demo as presented in deliverable D2.2. 

 

The scenarios presented in Table 9 were used to investigate the potential and limitations of the cyber-
attack detection and mitigation engine across a wide range of perception functions related to: 

1. Moving Object Detection 
2. Self-Localization 
3. Occupancy Grid Mapping/ Object Boundaries Definition 
4. Fully autonomous parking.  

The number and the extend of perception engine components tested, exceeded the initial planning as 
this was specified in WP2, WP3 and WP4. More specifically, while in the afore mentioned work 
packages it was planned to have the cyber-attack detection and mitigation engine tested only for use 
cases (1) and (4), we finally tested it across perception components related to object detection, 
navigation and automated parking.  
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The primary navigation of autonomous vehicles depends on the effectiveness of the sensor processing 
techniques applied to the data collected from various visual sensors. Therefore, it is essential to develop 
the capability to detect objects like vehicles and pedestrians under challenging conditions such as like 
unpleasant weather, poor illumination conditions, high speed, and motion on uneven ground. Thus, all 
the scenarios discussed through sections 2.2.2.1 to 2.2.2.4 have been tested in the test area in 
Panasonic premises. 

2.2.2.1 Moving Object Detection 

Moving object detection is the task of identifying the physical movement of an object in a given region 
or area. Over last few years, moving object detection has received much of attraction due to its wide 
range of applications like video surveillance, human motion analysis, robot navigation, event detection, 
anomaly detection, video conferencing, traffic analysis and security. In addition, moving object detection 
is very consequential and efficacious research topic in field of computer vision and video processing 
since it forms a critical step for many complex processes like video object classification and video 
tracking activity. Consequently, identification of actual shape of moving object from a given sequence 
of video frames becomes pertinent. However, task of detecting actual shape of object in motion 
becomes tricky due to various challenges like dynamic scene changes, illumination variations, presence 
of shadow, camouflage, and bootstrapping problem. Throughout the demo for CARAMEL, we have 
performed the experiment as illustrated in Figure 9. 

An object is moving in the area behind the ego vehicle various trajectory shapes, speeds and postures 
and the object detection perception module is detecting the object while the camera sensor is attacked 
in the way described in Table 9. 

 

Figure 9: Schematic representation of the parameters of the experiment testing CARAMEL’s cyber-attack detection 

and mitigation engine in the moving object detection use case. 

 

From Figure 10 to Figure 12 illustrate instances of the experiments as well as the output of the moving 
object detection perception modules. 
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Figure 10: Malicious user attacks to the Moving Object Detection perception component. While the autonomous 
vehicle, engaged for CARAMEL, is static pedestrians are moving. 

 
 

Figure 11 and Figure 12 illustrate the output of the moving object detection module at the presence.  
 

  
(a)                                                                                    (b) 

 
Figure 11. Output of the moving object detector perception engine, at the absence of cyber-attack. (a) camera 
output at the viewing layer, (b) Output of the perception layer: moving pedestrians crossing the vehicle trajectory. 
The bounding box highlights the object’s boundaries. The direction, speed and time to collision is disclosed. 
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(a)                                                                               (b) 

Figure 12. Output of the moving object detector while the vehicle is not under cyberattack. (a) viewing layer, (b) 
Output of the perception layer: moving pedestrians out of vehicle trajectory. The direction, speed and time to 
collision is disclosed. 
 

As part of visual inspecting the efficiency of CARAMEL’s cyber-attack detection and mitigation engine,  
Figure 13 (a)-(d), illustrate the output of moving object detection when the vehicle is submitted to cyber-
attack. Figure 13 (a), (c) present the output of camera view, when the vehicle is cyber attacked, while 
Figure 13 (b), (c) display the output of the moving object detection module after the CARAMEL’s cyber-
attack detection and mitigation engine. As seen, the localization of moving object as well as the speed 
and direction of moving objects are still detected. 
 

 
(a)                                                  (b) 

 

 
(c)                                                                                  (d) 

Figure 13. (a), (c) Camera sensor cyber attacked, the cyber attacked is detected and the mitigation engine is under 
progress. (b), (d) output of the moving object detection module after the cyber-attack mitigation engine has been 
performed.  
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Subsequently, section 2.2.2.2 summarizes the demo output of investigating the efficiency of 
CARAMEL’s cyber-attack detection and mitigation engine in self localization operation.  

2.2.2.2 Self-Localization 

As above, the scenario involves an attacker holding a remote control through which he activates some 
malicious software, already installed in the car (Figure 14). 

 

Figure 14. The autonomous vehicle engaged for CARAMEL is cyber attacked by an external agent, through a 
remote control. 

 

To assess the potential and the limitations of the CARAMEL’s detection and mitigation engine employed 
to robustify the autonomous navigation function, CARAMEL’s test vehicle, as part of the self-localization 
demo, the vehicle moves on a closed loop, on uneven ground at velocities ranging from 0-15 km/h. 
While the car moves, the camera sensor is attacked, the location as well as the trajectory of the vehicle 
is estimated through the camera-based odometry. The accurate mitigation of the attack is assessed 
through measuring the divergence between the start and end point of the trajectory. In case of 
successful mitigation, the end and start point should coincide. 

In the figures presented below, Figure 15 illustrates an instance of the camera based cyber-attack as it 
is displayed in the viewing layer (top left), the 3D modelling of the scene after the mitigation of cyber-
attack is displayed on bottom left image. The trajectory estimation along with the occupancy grid map 
is presented on the right image. Moreover Figure 16 illustrates the trajectory estimation (output of self-
localization module). The green trajectory is derived by the visual odometry (camera sensor), while the 
vehicle is under attack. The red trajectory compromises the output of the localization module based on 
the flex ray sensor. As it can be observed, according to the camera-based localization solution, the 
vehicle moved on a closed trajectory, which corresponds to the shape of the trajectory performed by 
the vehicle. However, the red trajectory (estimated by the flex ray sensor) illustrates a considerable 
divergence. Thus, it can be observed that despite the camera being attacked, the camera-based 
localization solution performs better than the flex-ray. The inaccuracy of the flex ray odometry is 
basically due to insensitivity of the mechanical sensors at low speed (<8kph) and steep yaw turning. 
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Figure 15. Camera based cyber-attack illustrated in the viewing layer (top left), bottom left: 3D modelling of the 
scene after the mitigation of cyber-attack. Right image: trajectory estimation and occupancy grid map. 

 

 

Figure 16. Trajectory estimation as output of self-localization function. The green trajectory is the visual odometry 

(camera sensor) output, while the camera is cyber-attacked. The red trajectory is the output of flex ray odometry. 

 

2.2.2.3 Occupancy Grid Mapping/ Object Boundaries Definition 

As discussed in Caramel Deliverables D3.2 and D3.5, It is of interest to understand the impact of noise 
on the performance of autonomous vehicle in its autonomous navigation. Concretely, we would like to 
understand how much degradation of the Occupancy Grid Map (OGM) occurs (Figure 17) when the 
camera is cyber attacked as well as how much the front of the obstacles is distorted (Figure 18). For 
obstacle avoidance in navigation, it is practically efficient and much more meaningful to compare the 
outcome of obstacle polygons extracted between OGMs. This is because the polygons are 
fundamentally used for calculating time-to-collision and planning the local path to avoid possible 
collision. On the other hand, for parking applications, it is much more meaningful to measure the free-
space and obstacle’s boundaries within surrounding environment to examine whether a possible 
parking-slot is detected, and an optimal trajectory can be planned accordingly. To make this clear, let’s 
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review an example in Figure 17. In both figures, the point cloud created by a camera-based 3D 
reconstruction solution is fed into the OGM. Obstacle polygons (Figure 18) are boundaries of high objects 
(>15 cm height), which are extracted and marked in red by a pre-determined solution.   

 

Figure 17. Output of the CARAMEL’s cyber-attack immunization engine at the OGM level. Top Left: output of the 
cyber-attack at the viewing layer. Bottom Left: 3D Environmental sensing layer output. Right Image: Occupancy 
Grid Map built during the car moving as displayed in the left image.  

 

 

Figure 18. Output of boundary estimation while the camera is cyber attacked. Top left: Output of 3D environmental 
sensing. Bottom left: Cyber-attack at the camera sensor. Right image: Polygons enclosing the point clouds 
clustered as discrete objects. 

 
As it can be assessed by the Figure 17 and Figure 18,  the efficacy of CARAMEL’s cyber-attack 
immunization engine can provide robust scene understanding under adverse illumination conditions 
both outdoors Figure 17  and indoors Figure 18 as well as at diverse weathering conditions, like raining 
Figure 17. 

As the demonstration developed into exploring the robustness of CARAMEL’s cyber-attack 
immunization engine, at first the critical modules contributing to Automated Emergency Braking (e.g., 
Moving Object Detection, Self-Localization) and obstacle avoidance (self-localization, Occupancy Grid 
Mapping) were assessed and at a next step, the robustness of CARAMEL’s solution in addressing 
cyber-attacks to the Fully Automated Parking is also investigated. The investigation of this function was 
out of the scope of the Grant Agreement. However, as the derived results regarding lower-level functions 
outperformed consortium’s expectations, it was decided to also investigate the potential and limitations 
of CARAMEL’s solution at this higher level of functionality. 
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2.2.2.4 Fully autonomous parking 

Numerous advanced driver assistance systems (ADAS) are applied in daily transportation vehicles. 
However, only a few fully autonomous driving applications are implemented due to safety and law 
considerations. Therefore, because of the relatively low risks and well-known environments, 
autonomous parking may be the first fully autonomous application. In addition, parking becomes one of 
the major challenges in metropolitan cities recently because of the increment of vehicle numbers. Also, 
the size of parking slot and garage space can be decreased without human factor consideration. 
Therefore, autonomous parking is regarded as one of the autonomous vehicle major benefits. In 
advance, regarding to the functions involved in autonomous parking, they are categorized into six broad 
categories (Figure 19): sensors, localization, perception, planning, control. Except for vehicle control, 
that there are still more strict functional safety rules needed to be fulfilled, all the other modules were 
involved in the demo presented in the current session.  

 

 

Figure 19. The functional modules implemented on the autonomous vehicle engaged for CARAMEL. The 
modules enclosed in the light blue bubble are attacked during the demo presented in 2.2.2.4. 

 
As part of assessing the robustness of CARAMEL’s solution, the output of Autonomous Parking function 
at the absence and presence of cyber-attack is investigated. Figure 20 illustrates the output of parking 
slot detection when no attack is performed, while Figure 21 presents re-iteration of the same experiment 
at the occurrence of cyber-attack. 

 

Figure 20. Bottom Left: Viewing Layer, Top Left: 3D environmental modelling, Right Image: Object boundaries (red 
lines) and Parking slots detected (grey and green). Green slot: Parking slot topology for which the cost function of 
the planner is minimized. 
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Figure 21. Bottom Left: Viewing Layer presenting the output of camera sensor being attacked. Top Left: 3D 
Environmental Sensing. Right Image: Object boundaries presented by the red lines and the available parking slots 
highlighted by grey and green are presented. The green is the one assessed as optimal by the planner. 

 

Through a comparative study of Figure 21 and Figure 22 it can be verified that the shape and the topology 
of the object boundaries as detected before and after the cyber-attack are identical. Moreover, the 
position of the available and parking slots and the optimal are not disturbed because of the attack. 

Figure 22 and Figure 23 also provide a comparative study of the final parking function performance in the 
absence of attack and while the vehicle is attacked correspondingly. 

 

Figure 22. Bottom Left: Viewing Layer presenting the output of camera sensor. Top Left: 3D Environmental Sensing. 
Right Image: graphic representation of the position and planned trajectory of ego vehicle, while parking. 

 

As it can be assessed through Figure 22 and Figure 23, CARAMEL’s solution robustifies the Automated 
Parking function towards the cyber-attacks. Thus, allowing all the modules involved: perception, 
localization, planning to be immune. 
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Figure 23. Bottom Left: Viewing Layer presenting the output of camera sensor under cyber-attack. Top Left: 3D 
Environmental Sensing. Right Image: graphic representation of the position and planned trajectory of ego vehicle, 
while parking. 

2.3 Adversarial attacks on Camera Sensor (Perception Layer): 
attack use case description and assessment 

The vehicle will be evaluated in real images and point clouds using the KITTI dataset [3]. In each frame, 
the perception engine will fuse the 2D and 3D results coming from the camera and LIDAR sensors 
accordingly to increase the situational awareness of the driver. At some point, an external attacker will 
deteriorate the image data by applying adversarial noise and some objects of the scene 
(pedestrian/vehicle/bicycle) will be hidden from the perception engine. The proposed multimodal fusion 
algorithm will manage to alleviate this type of noise by integrating a denoising method atop a robust 
CNN (Convolutional Neural Networks) detector and then correlating the 2D with 3D outputs.  

In overall, to highlight the impact of our technique, the different perception results will be shown to the 
user in case of an attack, by activating and deactivating our algorithm. The proposed use case is shown 
in Table 10. 

Title Description Solution Developed for CARAMEL 

Robustness to 
adversarial 
attacks on the 
camera sensor 

The autonomous vehicle is expected to 
drive from a starting location to a given 
destination following a specified path. At a 
given time instance, the image of the 
vehicle will be tampered through a specific 
perturbation (adversarial noise) intended to 
cause the perception module to misbehave 
(e.g., hide objects that are within the field of 
view). 

A two-stage solution has been proposed.  
A coarse mitigation step has been applied at the 
first stage inside the anti-hacking device, aiming to 
alleviate the adversarial attack from malicious 
images. Then, a fine mitigation step has been 
implemented inside the on-board unit that fuses 
information from multiple modalities.  
Finally, a robust decision for the scene perception 
is shown to the driver. 

Table 10: Brief overview of proposed use case in adversarial attack on camera sensor. 

 

2.3.1 Pipeline Demonstration 

2.3.1.1 Introduction 

The proposed pipeline consists of two stages performing coarse mitigation and a fine mitigation step. 
Data from the camera and lidar sensors are given as input to the whole procedure. A 2D image 
denoising method has been implemented inside an embedded device for the first step, aiming to 
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alleviate the adversarial attack from the malicious images. Next, a multimodal fusion method has been 
implemented in the on-board unit as a fine mitigation step, by combining the results of a 3D object 
detection and a 2D image segmentation network. The final output contains a flag, indicating whether 
there exists an external attack on the camera sensor or not, and the detected objects in the scene. The 
high-level architecture is shown in Figure 24. 

 

Figure 24: Overview of the pipeline showing the interaction between the anti-hacking device and the on-board 
unit. 

2.3.1.2 Dataset 

KITTI dataset was utilized for our experiments. It has been captured from a Volkswagen (VW) station 
wagon for use in mobile robotics and autonomous driving research. In total, there are recorded 6 hours 
of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution colour and 
grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial 
navigation system. It also contains object labels in the form of 3D tracklets and online benchmarks for 
stereo, optical flow, object detection and other tasks. In our case, data coming from the sensors of the 
RGB camera, semantic segmentation camera and lidar were utilized to train our algorithms. Some 
random images are illustrated in Figure 25. 

 

 
Figure 25: Random images from Kitti dataset.  
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2.3.1.3 Deep Neural Networks (DNNs) Models 

Three types of deep learning models were implemented for our proposed solution, as we can observe 
from Figure 26. Firstly, a 2D Image Denoising model was trained that follows the structure of AdaFM [4] 
network to enhance high-level vision applications. The training of a 2D Robust Image Segmentation 
follows, in which Deeplab [5] architecture was utilized. This model revisited the Atrous Spatial Pyramid 
Pooling by experimenting with cascading and parallel application of dilated convolutions. Finally, for the 
3D Object Detection part, PointRCNN [6] was proposed that achieves state-of-art results in a two-stage 
3D object detection framework. Finally, each of the previous models are shown in the next sections:  

 

 

Figure 26: Overview of the pipeline between anti-hacking device and on-board unit. 

2.3.1.3.1 2D Image Denoising 

AdaFM network was utilized for the 2D Image Denoising part. AdaFM enables consecutive modulation 
of the restoration strength with little computation cost. At first a standard restoration CNN is trained for 
the   start   level, and then AdaFM   layers are inserted to optimize it to the end level.  After the training 
stage, CNN parameters are being fixed. The filters of AdaFM layers are interpolated according to the 
testing restoration level.  By using a controlling coefficient, the CNN can consecutively and interactively 
manipulate the restoration effects. Finally, the whole architecture is illustrated in Figure 27. 

. 

 

Figure 27: Architecture of 2D image denoising network. 

2.3.1.3.2 2D Robust Image Segmentation 

Deeplab revisited the Atrous Spatial Pyramid Pooling (ASPP) [7] by experimenting with cascading and 
parallel application of dilated convolutions. This allows them to improve upon their previous work [5] 
while achieving comparable results to PSPNet [8]. As denoted in [9] it performs multi-scale processing 
and should be preferred in safety-critical applications due to its inherent robustness against adversarial 
attacks. Finally, the whole architecture is illustrated in Figure 28. 
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Figure 28: Architecture of 2D robust image segmentation network. 
 

2.3.1.3.3 3D Object Detector 

PointRCNN achieves state-of-art results in a two-stage 3D object detection framework. The first stage 
segments foreground points and generates a small number of bounding box proposals from the 
segmented points simultaneously, while the second stage conducts canonical 3D box refinement. The 
whole architecture of PointRCNN is illustrated in Figure 29. 

. 

 
 

Figure 29: Architecture of 3D object detector. 

2.3.1.4 Use case test setup 

The general idea of the proposed use-case is shown in Figure 30. The autonomous vehicle (shown in 
orange color) is expected to drive from a starting location to a given destination following a specified 
path. At a given time instance the image of the vehicle will be tampered through a specific perturbation 
(adversarial noise) intended to cause the perception module to misbehave and hide objects that are 
within the field of view. On the left sub-image, the result of the perception engine is shown without the 
integration of our solution. In that case, an external attacker has added adversarial noise to the camera 
image. As a result, the segmentation network is unable to perceive the environment successfully. 
Hence, some objects, such as a pedestrian and a vehicle are hidden from the perception engine making 
it possible for a collision. On the other hand, as we can observe from the right sub-image, the integration 
of our solution manages to restore the attacked image. Overall, we managed to achieve contextual and 
situational awareness, by fusing different data sources of information to facilitate the decision-making 
process and decrease the rate of possible collisions.  
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Figure 30: Proposed use-case. 

2.3.1.5 Demo layout 

The demo layout consists of three outputs as we can observe from Figure 31. On the bottom left we can 
observe the 3D object detection of raw point clouds coming from the Jetson device. On the bottom right, 
the 2D semantic segmentation is shown of the denoised image coming from jetson. Finally, on the top, 
the multimodal fusion output is illustrated between the 2D and 3D results. 

 

 

Figure 31: Demo layout. 

2.3.2 Image Quality Deterioration Attacks on Camera Sensor 

Autonomous vehicles increasingly rely on cameras to provide the input for perception and scene 
understanding (e.g., object detection, segmentation, and steering angle prediction). Hence, the ability 
of scene understanding models to perceive their environment effectively, under adverse conditions is 
crucial. When failures occur - either unintentionally or through targeted attacks, they affect the integrity 
of camera sensor data and in turn could render these cameras ineffective in providing reliable input to 
the autonomous vehicle. The aim of this use case is to demonstrate the effect of image deterioration 
attacks on the camera sensor and through specific scenarios demonstrate the developed detection and 
mitigation strategies based on the Drive Guard framework, which was elaborated in deliverables D3.2 
and D4.2. Drive Guard is implemented as an anti-hacking device which acts as a middle component 
between the camera unit and the on-board perception module of the vehicle which for the purposes of 
this use-case will be simulated on a dedicated PC running the CARLA simulator. 
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Figure 32: Layout of the use-case scenario. 

 

2.3.2.1 Dataset/Virtual Environment 

The open-source autonomous driving simulator, CARLA, was chosen to serve as a modular and flexible 
API to address the need of generating virtual environments for our demonstration purposes. This 
environment provides a wide range of flexibility in generating different regional sceneries as well as the 
opportunity to alter different environmental elements such as the involved actors and weather 
conditions.  

 

Figure 33: The CARLA environment [1]. 
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2.3.2.2 Drive Guard Summary 

The Image quality deterioration could result in rendering the cameras ineffective in providing reliable 
input to the perception model of the autonomous vehicle. To mitigate the effect of this adversity we 
developed “Drive Guard”, a deep learning solution which was described extensively in deliverables D3.2 
and D4.2. We provide here a summary for completeness.  

This framework is based on a convolutional autoencoder that learns to restore the image quality. In 
addition to traditional autoencoder architectures, the autoencoder effectively incorporates the temporal 
dimension, in an approach that also encodes information from preceding frames. Through the 
deployment of sequences of frames as input to the model we strengthen its understanding of object 
structure. This is achieved by incorporating a second input stream which encodes the information of the 
previous frame in parallel with the current frame-steam, for the first two layers. The two streams are 
concatenated and inputted to the third encoding layer. The structure of the spatiotemporal autoencoder 
is shown in the Figure 34. 

 

Figure 34: The Drive Guard deep learning model. 

 

2.3.2.3 Use case test setup 

The autonomous vehicle is expected to drive from a starting location to a given destination following a 
specified path. At a given time instance the image of the vehicle will be tampered through a specific 
perturbation intended to cause the perception module to misbehave (e.g., either detect objects that are 
not truly present or hide objects that are within the field of view). Drive Guard receives the raw image 
from the camera sensor, flags whether an attack on the image was detected or not and feeds the 
reconstructed image into the perception module. Then a comparison is made by evaluating and 
comparing the perception module outputs with and without Drive Guard. 

The Involved Actors are: 

• Simulation environment: The open-source autonomous driving simulator, CARLA, was 
chosen to serve as a modular and flexible API to address the need of generating virtual 
environments for our demonstration purposes. This environment provides a wide range of 
flexibility in generating different regional sceneries as well as the opportunity to alter different 
environmental elements such as the involved actors and weather conditions. 

• Attacker: The attacker is responsible for executing image deterioration attacks on the images 
supplied by the camera sensor. These attacks are simulated by adding noise and artefacts to 
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the original camera sensor images. The attack is considered to be injected as a small piece of 
software that manipulates the input image. The severity and access control gained by this 
software injection can of course vary but we consider here a simple case where the attacker 
can manipulate the camera capturing pipeline to alter the image data. 

• Anti-hacking device: The algorithmic detection solutions will be present into an embedded 
anti-hacking device that will be capable of passive detection of attacks on the vehicle’s visual 
perception modules. The anti-hacking device will be a physical controller that will be integrated 
into the simulated autonomous vehicle. Its task is to run dedicated ML models that work on the 
sensor data to detect anomalies that might point to malicious attacks. This is responsible to 
receive the output of the camera sensors, identify and mitigate the possible attacks on the 
images and feed the reconstructed images back to the simulated perception module of the car, 
which for the purposes of this demo will be implemented on the CARLA PC. 

• Simulation designer/operator: A simulator designer creates different scenarios within the 
CARLA simulator environment by altering the regional scenery components and the involved 
actors. These environments will be used to generate different scenarios, which in turn will be 
employed to evaluate the performance of the proposed solution in detecting and mitigating the 
effects of image deterioration attacks on the camera sensor. In addition, this actor tests the anti-
hacking device and evaluates its performance by applying it on different simulated scenarios. 

• Data scientist: Generates a large quantity of labelled data from the simulated environment. 
Designs and implements the Deep Neural Networks, able to detect and mitigate the effects of 
any possible attacks on the camera sensor. The models are trained on the labelled data 
provided by the data scientist.  

2.3.2.4 Demo layout 

The simulation will cover two possible cases. First receiving data from the CARLA simulator and using 
the Jetson device to detect and mitigate an image, as well as receiving data sequences corresponding 
to data captured from real cases. In both cases the outputs are visualized by displaying the attack 
detection signal and severity of the attack. 

 

Figure 35: Example simulation and visualization layout of the overall system. 
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3 Pillar 2 scenario driven attacks 

The mobility pillar tackles with the detection and mitigation of cyberattacks performed at the 
communication layers. Moreover, specific type of attacks at the OBUs and the RSUs are considered 
and the mitigation strategies which were developed during CARAMEL, will be analyzed during the 
chapter 3 and its subsections and the results of the experimentation faced “demo” will be presented 
inside it. 

3.1 Location spoofing attack: attack use case description and 
assessment 

Using SDR hardware, the attacker can spoof GPS satellite signals. The vehicle relies on a second 
location stream to identify a possible GPS location spoofing attack, based on the vehicle's movement 
description, IMU and GPS-free localization measurements. 

3.1.1 Collaborative GNSS spoofing detection and mitigation 
mechanism 

3.1.1.1 Use case setup (UC2.1) 

Location spoofing attack aims to compromise the self-positioning ability of vehicles.  

A location spoofing attack attempts to fool a GNSS receiver by broadcasting false satellite signals, 
focused on resembling a set of normal satellite signals. These spoofed signals may be modified in such 
a way to cause the receiver to estimate its location even kms away from its actual position. The impact 
of this attack is more devastating if we consider a group of connected vehicles, which exchange their 
location measurements in order to coordinate their actions. Broadcasting falsified GNSS positions, then 
severe traffic accidents are more likely to take place, injuring drivers, pedestrians, cars, etc. Therefore, 
this use case targets on evaluating the performance of CARAMEL’s collaborative defense mechanism 
against GNSS spoofing in terms of: i) mitigation ability (i.e. compensate the effect of spoofing), ii) 
detection ability (i.e. identify the ids of compromised vehicles). The conceptual architecture of this 
approach is shown in Figure 36. 

The testing simulated framework deployed can be illustrated in Figure 37. It is composed of a data-
producing end (simulator) and data consumers (ROS nodes). The simulator is used for producing data 
from sensors attached to vehicles. The ROS Bridge translates the sensor data to ROS-compliant 
messages and the ROS Nodes utilize the messages. 

The described setup was deployed on a PC with the following specifications: 

● Ubuntu 18.04 

● RAM 16GB 
● GPU NVIDIA RTX 2080 
● CPU i7 Intel 
● ROS Melodic 
● Carla 0.9.10-1 
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Figure 36: High-level architecture of CARAMEL’s collaborating defense mechanism. 

 

 

Figure 37: Testing simulated framework. 

 

CARLA is an open-source autonomous driving simulator. It is based on Unreal Engine for conducting 

the simulation and utilized the Open-Drive standards for defining targets and urban settings. Simulation 
parameters can be controlled programmatically via a C++ or Python API. Moreover, it consists of 
scalable client-server architecture, in which the server is responsible for every having to do with the 
simulation, like scene rendering, updating physics, actors’ state etc.  

A brief list of the simulator’s distinct features includes: 

● The traffic manager is a built-in system used for enforcing realistic behaviors upon the vehicles. 

● Various sensors for publishing information (LIDAR, RGB, depth, RADAR, IMU, GNSS, 
semantic). 

● A recorder for re-enacting the simulation step by step. 
● The ROS bridge for integrating CARLA to ROS. 
● Easy creation and customization of assets. 
● The scenario runner for describing routes and traffic scenarios. 
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The Robot Operating System (ROS) is a set of software libraries, tools and conventions that consists 
of a flexible framework for writing robot software. ROS requires a Linux OS and depending on the Linux 
version there is a relevant ROS version. For ROS melodic the installation procedure is the following: 

• Setting up your computer to accept software from packages.ros.org. 

• The ROS-Bridge facilitates the bidirectional communication between the simulation 
environment and ROS runtime.  

• The messages from CARLA have translated to relevant ROS topics and at the same time 
messages originated from ROS get translated to CARLA commands. 

The Involved Actors of the use case are summarized as follows: 

• Ego vehicle and the cluster which belongs to 

• Simulation environment: CARLA-ROS testing simulated framework. 

• Attacker: The attacker is responsible for executing spoofing attacks against the GNSS 
receivers of cluster’s vehicle. These attacks are simulated by adding zero mean Gaussian noise 
with high variance to the ground truth positions of vehicles.  

• CARAMEL’s collaborative defense mechanism: The associated algorithmic mitigation and 
detection solutions. Its task is to run dedicated AI solutions that work on the data transmitted to 
the central node. It is responsible to receive the measurements of the cluster's vehicle, identify 
and mitigating the possible attacks on the GNSS receivers and feeding the re-estimated 
positions back to the involved vehicles. For this demo, this will be implemented on the CARLA 
ROS PC. 

3.1.1.2 Demo layout 

 

Step 1: Initiate CARLA simulator: 

 

Figure 38: CARLA environment. 

Step 2: Ego vehicle starts driving: 
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Figure 39: Ego vehicle. 

 

Step 3: Spawn 50 vehicles inside the simulated city: 

  

Figure 40: Spawned vehicles in the CARLA. 

 

Figure 41: Ego vehicle and its neighbors. 

 

 

 

Step 4: Setup the ROS bridge between the simulation environment and ROS runtime: 
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Figure 42: ROS bridge. 

Step 5: Execute the Python script for spoofing detection and mitigation and bird’s eye view display of 
results: 

 

Figure 43: Python code for spoofing detection and mitigation. 
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Figure 44: Python code for bird’s eye view. 

3.1.1.3 Use case evaluation 

During the simulation, vehicles of the cluster send to the ego vehicle their GPS self-positions, spoofed 
or not, as well as their relative observations (distances and angles) towards the nearby vehicles. Ego 
vehicle, along with its measurements, formulates the Laplacian matrix which indicates the connectivity 
links among the vehicles, and the differential coordinates. The cooperative centralized method 
Centralized Laplacian Localization (CLL) [10] can be adopted by the ego vehicle to estimate cluster’s 
positions highly accurate. However, CLL’s performance is seriously degraded when self-positions are 
spoofed. For that reason, we have developed its robust alternative, Robust CLL (R-CLL), to detect and 
mitigate the impact of spoofing. See a more detailed algorithmic analysis in the deliverables D4.3: 
Situational Awareness Solution based on the Machine Learning Applications,  D4.4: Report on 
the Fallback Actions for Minimal Risk Conditions and [11], [12]. Therefore, initially the demo video 
begins without spoofing, as shown below: 

 

Figure 45: Bird’s eye view – No spoofing. 

We see from Figure 45, that the cluster consists of 10 vehicles, while the texts above vehicles indicate 
the benefits (green) or not (red) in meters of R-CLL with respect to GPS. Statistical results are provided 
through the corresponding Cumulative Distribution Functions (CDFs) of self-location error as well as the 
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root mean square error over cluster’s size of vehicles’ positions. CDF indicates the probability of the 
error to be lower than a threshold. Accuracy improves as long as CDF moves to the “left” side of the 
diagram. The corresponding curves are shown below: 

 

Figure 46: CDF of ego vehicle’s and cluster’s position error – No spoofing. 

In the absence of spoofing, CLL is slightly better than R-CLL. Even in that case, R-CLL reduced self-
position error of GPS by 72% and cluster’s error by 59%. Additionally, both maximum errors reached 
almost 3.5m, against 7m and 6m with GPS. 

After 200-time instances, spoofing begins and targets 10% of cluster’s vehicles, along with ego vehicle. 
The corresponding figures are shown below: 

 

Figure 47: Bird’s eye view - Spoofing. 
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From Figure 47, we see that the cluster consists now of 15 vehicles. An alert of spoofing detection at the 
ego vehicle is also displayed, and more importantly R-CLL reduces spoofed self-GPS error by 23m, 
addressing highly efficient the impact of location attack. Figure 48 demonstrates also the superior 
performance of the developed R-CLL. The latter outperforms CLL in the case of location outliers, both 
for self and cluster positions. For example, R-CLL achieved maximum cluster position error equal to 
4m, against 8m and 16m with CLL and spoofed GPS. Actually, R-CLL reduced spoofed self and cluster 
GPS error by 93% and 78%.  

Therefore, we conclude that CARAMEL’s collaborative defense mechanism is highly efficient against 
location spoofing attacks, significantly mitigating their impact as well as raising alerts when spoofing 
was detected. 

 

Figure 48: CDF of ego vehicle’s and cluster’s position error – Spoofing. 

3.1.2 Location spoofing attack 

Location spoofing attack use case deals with detection of jamming and location spoofing.  

A location spoofing attack attempts to deceive a GNSS/RTK receiver by broadcasting incorrect satellite 
signals, structured to resemble a set of normal satellite signals. These spoofed signals may be modified 
in such a way to cause the receiver to estimate its location to be somewhere other than where it is.  

Civilian GPS signals are unencrypted and therefore present a vulnerability which can be exploited by 

an attacker. If such an attack is undetected, the vehicle can be steered from its desired trajectory and 
that can lead to various safety hazards. This use case aims to demonstrate the usability and 
effectiveness of machine learning algorithms in detecting the anomalies in GPS data. The proposed 
use case description is shown in Table 11. 
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Title Description Solution Developed for CARAMEL 

Location 
Spoofing 
Attack 

The attacker can jam the satellite signals and 
the connected car does not have satellite-
based location (e.g., GNSS/RTK). 
 The attacker can spoof the satellite-based 
location of the connected car. 
CARAMEL system aims to detect the 
jamming and location spoofing attack. 

The TCN model was trained to predict the GPS 
location of the vehicle at the next time frame. 
Vehicle measurements and GPS data were used 
as input features, together with several 
engineered features. At each time frame 
prediction of a model is compared to actual value 
coming from the GPS receiver, if the difference 
between them exceeds predefined threshold, 
GPS data is considered as spoofed, and warning 
is displayed to the driver. 

Table 11: Brief overview of the proposed use case for location spoofing attack. 

 

The general high-level overview of the solution, developed for this scenario is described in D3.4, is 
presented in Table 12: 

Type of Algorithms Description 

Pre-processing of GPS data 
and vehicle parameters 
from CAN 

Obtaining the data from the GPS sensor along with the vehicle parameters to 
predict the location of the vehicle in the next time step. The data obtained from 
two sources will go through a pre-processing step. 

Spoofing attack detection  After the pre-processing step, the data is sent to the TCN model. At the training 
session, the network would have been trained with a similar dataset so that it can 
identify if there is any deviation in the values recorded. 

Warning/Alert message After the Neural Network detects the anomaly, a warning would be displayed to 
the driver. 

Table 12: High-level overview of solution developed for location spoofing attack use case. 

 

For this use case, the following research and development was carried out in the CARAMEL project: 

1. Study of literature on existing anomaly detection methods in multivariate time series. 
2. Setup of Virtual Environment to generate a dataset and test the model. 
3. Development of Temporal Convolutional Network for predicting the vehicles position. 
4. Testing robustness of the developed model. 

3.1.2.1 Pipeline Demonstration 

3.1.2.1.1  Introduction 

The pipeline for demonstration of location spoofing attack is done according to Figure 49.  
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VTD is a simulation software which provides the environment and sensor readings. The environment 
consists of roads, road marks, signs, pedestrians, and vehicles. VTD sends vehicle position and speed 
parameters to the Model.CONNECT, where complete vehicle dynamics are simulated. During 
demonstration HackRF is used to perform location spoofing attacks by sending fake GPS data to the 
U-Blox GPS receiver, which passes it to Model.CONNECT via Python FMU. Model.CONNECT allows 
us to run Python script with a pretrained TCN detection model in a co-simulation environment. On each 
time frame detection is performed. In case of detected anomalies, a warning is displayed on the 
dashboard. 

  

Figure 49: Overview of the pipeline for location spoofing attack use case demo. 

 

3.1.2.1.2 Virtual Environment 
Virtual environment used for demonstration purposes was created in the VTD scenario editor. ODB map 
files from AVL’s database were used to create scenarios and generate approximately 20 hours of driving 
data. Due to different driving profiles on different types of roads (e.g., highway, city and rural roads), 
scenarios were carefully chosen to represent all the types equally.  

Maps of Graz and surrounding areas were used to represent urban and rural areas, together with 
Austria’s highway maps to represent highway driving scenarios. In total, 19 hours of generated data 
were used to train the model and one hour was used to perform the testing. Figure 50 shows the top-
down view of one of the highway scenarios which was created for the use case. Figure 51 depicts the 
environment from the main actor’s (Ego vehicle) point of view. 

 

Figure 50: Top-down view of scenario in VTD (section of Phyrn Autobahn). 
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Figure 51: VTD simulation environment. 

3.1.2.1.3  Temporal Convolutional Network (TCN) Model 

Two states of the art neural networks for working with sequential data were considered, Long Short-
Term Memory (LSTM) and Temporal Convolutional Network (TCN). Both resulted in similar 
performance in terms of evaluation metric – Root mean square error (RMSE). However, due to lower 
computation times we decided to proceed with TCN. TCN is a type of convolutional neural network, 
which was designed specifically for working with sequential data. It was developed as an attempt to use 
Convolutional Neural Networks (CNN) in the field of sequence modelling where Recurrent Neural 
Networks (RNN) have long been the state of the art. Results of recent studies suggest that TCNs 
convincingly outperform baseline recurrent architectures across a broad range of sequence modelling 
tasks [13]. TCN uses the concept of dilated causal convolution, which enables the network to consider 
multiple previous time steps when making a prediction. Figure 52 shows a dilated causal convolution 
with different dilation factors and kernel size k = 2. 

 

Figure 52: Dilated causal convolution. 

 

Detection of anomaly was modelled as regression. The output of TCN is therefore a prediction of GPS 

data in the next time frame. RMSE was used as a performance metric. For more information on TCN 
and its implementation refer to deliverable D3.4. 

3.1.2.1.4 Use case test setup 

Main purpose of the test case is to demonstrate the usability and accuracy of machine learning models 

for location spoofing attack detection. Various scenarios will be used, to represent different types of 
driving profiles and their effect on spoofing detection. Simulation will be run using predefined scenarios. 
At a given time instance the location from the HackRF will be switched on and will replace the GPS data 
from the simulation to cause an anomaly in the data. If the test is successful, the TCN model will 
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recognize the anomaly and inform the operator that the vehicle’s GPS is no longer reliable, by displaying 
a warning on the dashboard. In the simulation environment this warning will be displayed directly in the 
Model.CONNECT dashboard, which allows us to track the state of the vehicle in real-time during 
simulation. Figure 53 depicts the flow of spoofing attack detection in GPS in both attacked and normal 
scenarios. 

 

Figure 53: Flow of spoofing attack detection in GPS in attacked and normal scenario. 

 

3.1.3 In-vehicle Location Spoofing Attack Detection  

3.1.3.1 Introduction 

The in-vehicle solution against GPS location spoofing attacks fuses multi-source data, readily available 
from the CAV’s on-board sensors. In the prediction phase, multi-sensory data collected through the 
OBU and/or the CAN bus are used to compute the CAV’s predicted location in the next time step given 
the previous CAV location estimate. This is achieved by projecting the location ahead of time using the 
sensor readings and a CAV mobility model. In the update phase, the CAV location measurements, 
provided by a GPS-free localization algorithm (e.g., based on cellular networks), are used to update the 
predicted location utilizing Bayesian filtering and derive a refined location estimate. Finally, in the attack 
detection phase, the CAV location provided by the GPS receiver is compared to the refined location. If 
their deviation, e.g., Euclidean or Bhattacharyya distance, exceeds a threshold, then an attack is 
signified. 

The processing pipeline that implements the in-vehicle location spoofing attack detection solution is 
depicted in Figure 54. We simulate the moving vehicle, the onboard sensors and the real-time sensor 
data collection using the CARLA simulator and ROS integrated in a workstation PC. The embedded 
device (e.g., Jetson Nano) hosts both the Threshold selection algorithm and the Attack detection 
algorithm that comprise the attack detection solution. The attack detection threshold is selected during 
the Training stage, where the vehicle is moving under attack-free conditions (normal case), and then 
used to detect attacks in the Testing stage when location spoofing attacks are present (attack case). 
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Figure 54 Processing pipeline of the in-vehicle location spoofing attack detection solution. 

3.1.3.2 Use-case setup 

The setup for the demonstration of the location spoofing use-case is illustrated in Figure 55, where the 
attack detection solution is coupled with the testbed setup. In particular, the simulation environment 
(i.e., CARLA and ROS) will be installed and running on an on-site laptop. The detection solution 
including the Threshold selection and Attack detection algorithms will be running on an embedded 
device (e.g., Jetson) that will emulate the Antihacking Device (AD) installed in the car. In the future, as 
part of a production-level solution, the AD would send an alert signal to the OBU inside the car in case 
an attack is detected to propagate it further to the backend/MEC for awareness and/or possible 
mitigation actions, e.g., revoking the PKI certificates of attacked vehicles. 

 

Figure 55 Setup for the location spoofing attack use-case. 
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3.1.3.3 Use-case workflow and evaluation 

At the Training stage, the following workflow will be used:  

1. A moving vehicle will be simulated in the simulation environment driving under normal 
conditions (i.e., no attack) along a predefined trajectory with user-selected noise profiles for the 
simulated GPS data and the GPS-free estimated vehicle locations (e.g., based on cellular 
networks). 

2. The simulated sensor data will be collected and processed by the embedded device to compute 
the attack detection threshold. 

At the Testing stage, the following workflow will be used: 

1. A moving vehicle will be simulated in the simulation environment driving under mixed conditions 
(i.e., switching between normal and attack) along a predefined trajectory with similar noise 
profiles for the simulated GPS data and the GPS-free estimated vehicle locations. 

2. The GPS location spoofing attack will be simulated by adding a user-selected constant bias to 
both GPS location coordinates. 

3. The attack detection threshold computed in the Training stage will be provided as input to the 
Attack detection algorithm running in the embedded device. 

4. When no attack is present, a ‘green’ light will be turned on within the vehicle in the simulation 
environment to indicate that the vehicle is driving under normal conditions. 

5. When a location spoofing attack is present, the ‘green’ light will switch to ‘yellow’. Subsequently, 
a ‘red’ light will turn on next to it to signify that the detected has been successfully detected, as 
shown in the left part of Figure 56. 

 

 

Figure 56 Visualization of the attack in the GPS location spoofing use-case workflow. 
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3.2 Attack on the V2X Message Transmission: attack use case 
description and assessment 

3.2.1 Attack Description (UC2.2) 

In this use case we demonstrate two operations:  

• The interoperability between different radio technologies. 

• The attack on the V2X Message Transmission. 

The interoperability between different radio technologies is necessary when vehicles in the same region 
are using On-Board Units (OBUs) equipped with different standardized access technologies. Currently, 
it is possible to have OBUs with a single cellular connection (LTE-Uu), or others with this cellular 
connection plus a Vehicle-to-Vehicle (V2V) technology such as IEEE 802.11p, LTE-PC5, the new NR-
PC5 or the not yet standardized IEEE 802.11bd.  

As it has been described in previous deliverables, CARAMEL’s testbed consists of two types of vehicles, 
the “LTE-Uu only” and the “LTE-Uu + 802.11p”. To perform the interoperability, we deploy a fixed 
infrastructure consisting of an 802.11p RSUs network and a small private LTE network, both connected 
to a Multi-access Edge Computing (MEC) which, using different kinds of policies, forwards messages 
from a radio technology to the other.   

The attack on the V2X message transmission consists of two different kinds of attacks:  

• A malicious attacker transmits fake V2X messages. This is demonstrated in the testbed. 

• A malicious attacker tries to track a specific vehicle. This is demonstrated by simulation.  

CARAMEL addresses 5 types of fake V2X messages which are detected in the OBU and/or in the MEC: 

• Non-Signed messages: When this event is detected the message is dropped. 

• Messages signed with a non-valid certificate: This is the case where the certificate used to 
sign messages is not issued by a valid Certification Authority. When this event is detected, the 
message is dropped, and an alarm is triggered. 

• Non-authorized messages: This is the case where an OBU of a "passenger car" transmits 
V2X messages specifying that its vehicle type is an "emergency vehicle". The Authorization 
Ticket of this car has been issued in such a way that the receiver detects the anomaly. When 
this event is detected, the message is dropped, and an alarm is triggered. 

• Replayed messages: This is the case where an OBU captures a message transmitted by 
another OBU and retransmits it. A third receiver may receive both copies. When this event is 
detected, the message is dropped. It is also possible that the receiver only receives the replayed 
message. This case only represents a security problem if the message has been modified, 
which will be detected by the digital signature. Additionally, if the replayed message is received 
later than a threshold delay time, the message is dropped. An alarm is not triggered because 
this replayed message does not present any security problem, and it could also be replayed by 
the fixed infrastructure, which is, in fact, a compliant action. 

• Messages signed with a revoked certificate: When this event is detected the message is 
dropped and an alarm is triggered. 

In all previous cases, whenever an alarm is triggered, the backend receives a notification. The backend 
monitors alarms and performs statistics for management purposes.  

The case of a malicious attacker trying to track a specific vehicle by sniffing its transmitted messages 
represents a passive attack. CARAMEL has developed an algorithm that computes when the best time 
is to change the vehicle’s AT, trying to mimetize itself among multiple neighbor vehicles. To show how 
this algorithm works requires a relatively high number of vehicles, and it cannot be demonstrated in the 
testbed, for this reason it will be demonstrated using a simulation. In any case, the software to implement 
this algorithm has been integrated inside the anti-hacking device, but it is not being executed during the 
demonstration. 

Figure 57, extracted from D2.4 “System Specifications and Architecture”, shows the involved processes 
and actors. 
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Figure 57: Use case attack on the V2X Message Transmission (UC2.2). 

Involved actors:  

• Attacker: In the demonstration setup, the attacker is represented by an OBU connected by Wi-
Fi to a laptop, from where it is possible to activate the generation of the following fake messages: 
non-signed messages, messages signed with a non-valid certificate, messages signed with a 
revoked certificate, replayed messages and non-authorized messages. 

• Cooperative car: In the demonstration scenario, the cooperative car is represented by an OBU 
plus its anti-hacking device. It constantly transmits Cooperative Awareness Messages (CAM), 
checks the validity of the received ones and, in case of detecting a fake message, drops it and, 
optionally, triggers an alarm. It is also connected to a laptop, from where it is possible to activate 
and to stop the process of CAM transmission, and visualize the messages received from other 
cooperative cars. 

• Fixed infrastructure: In the demonstration setup, the fixed infrastructure is composed of two 
RSUs and one LTE small cell, all of them connected to the MEC using a VLAN capable Ethernet 
switch. Each RSU, covers a small geographical area. As small cells are supposed to cover 
larger areas, the small cell of the testbed covers the whole testbed area. These areas are used 
by the forwarding algorithm to showcase the forwarding of messages based on Region of 
Interest (RoI). Additionally, the Accelleran's small cell requires the Accelleran's dRAX™ Open 
Interface Radio Access Network (RAN), which provides an intelligent virtual RAN controller and 
it is implemented in a computer also connected to the Ethernet switch. 

• PKI infrastructure: In the demonstration setup, the PKI infrastructure is implemented using 
servers in ATOS network which are reachable using a standard Internet connection. It is 
composed of multiple virtual containers executing the following processes: the forwarding of the 
certificates identifying the Root, Enrolment, Authorization and Revocation Authorities, the 
enrolment process, the authorization process and the revocation process. At the end of the 
whole process, the PKI client, executed in each cooperative car, obtains a group of ATs which 
are used to sign V2X messages.  

• MEC: It is a computer with virtual containers executing the following processes: one V2X 
communication protocol stack for each RSU and the LTE network, the virtual Evolved Packet 
Core (vEPC) of the LTE network, the V2X forwarder, the Local Dynamic Map (LDM), the MQTT 
broker, the application which decides if a cooperative car will have its certificates revoked and 
application responsible of the Certification Revocation List (CRL) distribution. 

• Anti-hacking device: One anti-hacking device is directly attached to each OBU to execute 
those processes that, due to their computational requirements, cannot be executed in the OBU. 
Specifically, these processes are the MQTT broker, the high-level applications for the demo 
test, the PKI client, the tracking avoidance algorithm, the alarm detector, and the alarm 
notification. 
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3.2.2 Use case setup 

The testbed is deployed in Panasonic premises in Langen and is composed of communication devices 
and servers reachable through Internet (Figure 58): 

• RSU-1: It covers one specific area with IEEE 802.11p. 

• RSU-2: It covers another specific area with IEEE 802.11p. As we intend to show how vehicles 
from one area receive messages from vehicles of the other area through the infrastructure, and 
the test site is quite small, if all vehicles used the same channel, as it would be in a real case, 
all vehicles would see each other directly. To avoid this situation, we configure vehicles and 
RSU of both areas with different channels. So, the only option they have to receive messages 
is through the infrastructure. 

• Accelleran small cell: It provides LTE coverage to the whole testbed area. 

• MEC: It receives all messages transmitted by the vehicles and forwards them appropriately. It 
also deploys the core part of the LTE network and provides Internet connection to vehicles 
through this LTE network. 

• dRAX: It is a specific server devoted to control Accelleran small cells. It is necessary to deploy 
the LTE network.  

• Two ethernet switches connect all the infrastructure devices. 

• Two types of vehicles: Vehicles with IEEE 802.11p and LTE radio interfaces, and vehicles with 
only one LTE radio interface. Each vehicle deploys one OBU and one anti-hacking device (AD). 

• PKI servers: The PKIs servers will be reachable through Internet connection. 

• Backend monitoring server: This server is reachable through Internet connection and 
receives all alarms triggered by the vehicles to perform monitoring functions. 

• Backend LDM server: This server is used only for demonstration purposes. In a real case, 
every vehicle will continuously update its Local Dynamic Map (LDM), which is the data base for 
all Intelligent Transportation System (ITS) applications. In the testbed, all vehicles transmit the 
information acquired through V2X messages to this server and, using a frontend application 
developed in this project, it is possible to show what is happening in each vehicle by simply 
accessing this server from any computer. 

 

Figure 58: Testbed layout. 

Requirements: 

• Accelleran small cell and RSUs use Power Over Ethernet (POE). For the other devices it is 
required to have electrical power available. 

• Ethernet cabling. 

• Internet connection in the MEC. It is provided by a commercial LTE router. 

• Regulatory approval for mobile network use by the German Agency for networks (RegTP), for 
the specific test frequencies, area, duration, and geographic area. 10 MHz of bandwidth in band 
B43. 
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3.2.2.1 Local Dynamic Map server 

In order to perform demonstrations, the CARAMEL project has developed a cloud user interface 
backend to gather all the information regarding the V2X communications in the OBUs and show it on a 
web-based frontend. The OBUs maintain a permanent communication with the backend using their LTE 
interface.  

Frontend Layout 

The idea behind the design of the Frontend is to enable a global view, as well a specific view, of the 
V2X communications in a region and to be able to trigger attacks. The frontend has two working states: 

• General view of the whole environment: It is the initial view where all nodes which are sending 
information to the backend are listed and drawn on a map in grey (Figure 59). They are located 
on the map according to their position obtained by their GNSS receiver. 

 

Figure 59: Global view of the frontend of the LDM server. 

● Specific view of a vehicle: To see the V2X "sight" of a specific car (Figure 60), click the grey 
button on the right of its name on the list of nodes of the general view. Then, the selected node 
turns blue, and the surrounding nodes turn to different colours from green to orange or red. The 
colours of the surrounding nodes describe their status regarding the V2X communications 
security as they are perceived by the selected node. If the colour is green, it means that the 
security is completely fine, whereas orange and red mean that an anomaly or an attack has 
been detected. 
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Figure 60: Specific view of the frontend of the LDM server. 

 

Be aware that when we have a node selected, we are seeing its "view" through V2X communications, 
and some of the vehicles seen on the global view might disappear. This means that there is no V2X 
communication between these two nodes. 

Finally, using the blue buttons that appear in the specific view of a node, it is possible to trigger attacks. 
If an attack is launched, it is possible to see that has been detected in the other nodes, if the color of 
the attacker in the other vehicle's specific view, changes to orange or red. 

 

Figure 61: Architecture layout of the LDM server. 
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Backend module 

The backend module runs on a virtual machine in the cloud. Its function is to gather all of the information 
from all the involved nodes, through TCP connections. Once the information is stored in the backend, it 
is served to the frontend, and it will be accessible to any client that might connect through WebSocket. 
The general architecture layout can be seen in Figure 61. 

The communication between the backend and the OBU is done through a software module running at 
the Application/Facilities layer, being executed in the anti-hacking device, and using the LTE interface 
of the OBU to access Internet. 

The centralized backend waits for IP/TCP client connections. Once this connection is established, the 
client continuously publishes all gathered information using a JSON structure with the following format: 

{ 

   "station_id":2, 

   "type":"latest|all", 

   "position": { 

            "latitude": 42.1, 

            "longitude": 2.3 

         } <-- Latest position gathered by the GPS Node 

   "packets":[ 

      { 

         "timestamp": 123456 

         "type":"cam", 

         "validity": true, 

         "error":"error_type", 

         "certificate":"hashedId8_certificate", 

         "station_id": 2 

         "message":"cam without header in xml" 

      } 

   ], 

   "certificates":[ 

      { 

         "hashedId8":"hashedid8 cert", 

         "certificate":"cert in xml", 

         "validity": True, 

         "Error": "Error if not valid" 

      } 

   ], 

   "alarms":[ 

       "id": 12, 

       "message": "message of the alarm" 

   ] 

} 

 

Where the meaning of the fields is: 

● Station ID: Station ID of the node (published in the header of CAMs). 

● Type: It can be "latest" or "all". Type "all" means that we are dumping all of the LDM and 
received messages to the centralized backend. Type "latest" means that we are updating the 
previously uploaded information. 

● Packets: The received packets are placed in this list.  
● Certificates: All the received certificates, with their corresponding validity and hash. 

The centralized backend has to process all the information received by the nodes in order to be able to 
deliver the appropriate information to the front end. 
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The communication between the centralized backend and the frontend is done through WebSockets. 
The reason behind this choice instead of REST API is based in the fact that there is a continuous flow 
of information from the backend to the frontend. And, by using WebSockets, the continuous flow of 
information is possible without having to request each chunk of information. 

On opening up the app, the layout prints all existing nodes (without taking into account the V2X sight). 
This means that all the nodes are drawn on the map. To get the information of all the nodes, the front-
end connected to the backend through a WebSocket, uses the following petition: 

{ 

   "request" : "general" 

} 

The response from the backend will be to periodically sent the list with all of the nodes and relevant 
information for the first-time printing. The refresh frequency is around one response per second. The 
transmissions of these messages will not stop unless a new request is sent or the communication is 
closed. 

{ 

   "response": "general", 

   "content": [ 

      { 

         "station_id": 1, 

         "station_type": 5 // <- The same enumerated as the CAM standard 

         "position": { 

            "latitude": 42.1 

            "longitude": 2.3 

         } 

      } 

   ] 

} 

When the end-user requests the specific view of one node, the following request is triggered: 

{ 

   "request":"sightof", 

   "content":{ 

      "station_id": 3 <- Station ID of the selected node 

   } 

} 

The response only considers those vehicles seen by this node and displays them according to the colour 
code: green means all received packets are correct, orange means that generally all of the packets 
received are fine, but a few have been detected as problematic and red means all received packets are 
wrong, either because it's inconsistent or because is revoked. 

{ 

   "response": "sightof", 

   "content": [ 

         { 

         "station_id": 1, 

         "station_type": 5 // <- The same enumerated as the CAM standard 

         "position": { 

            "latitude": 42.1 

            "longitude": 2.3 

                  "state": "green|orange|red|blue", 

         "packets" : [ <- Last 10 packets received by the node 

               { 

               "timestamp": 123456 

               "type":"cam", 

               "validity": true, 

               "error":"error_type", 

               "message":"cam without header in xml" 
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               } 

            ] 

         }, 

      ] 

   } 

} 

 

"sightof" responses are periodically transmitted, and only stop when another "sightof" or "general" 
request is issued, or the communication is closed. 

3.2.3 Use case workflow 

The demonstration is divided into four parts. Firstly, we check that all preconditions for the normal 
transmission of V2X communication between cooperative cars are working properly, then, we reproduce 
all attack and interoperability use cases. 

3.2.3.1 Initial requirements to set up the V2X communications 
testbed 

Subsystem Operation Success end 
condition 

PKI servers ● Authorization certificate authority is reachable and signs ATs 

● Enrolment authority is reachable and enrolls registered vehicles 

● Authorization authority is reachable and authorizes vehicles 
according to their context 

● Revocation authority is reachable and keeps track of revoked ATs 

PKI servers are 
operative 

Backend 
server 

● Backend server is reachable - able to receive alarm notifications 
from the MEC and from vehicles - and displays alarms statistics 

Backend server 
is operative 

VLAN 
Ethernet 

● VLAN Ethernet switch is configured with 4 VLANs as in Figure 62 VLAN Ethernet 
is operative 

MEC ● MEC is configured with 8 virtual containers connected as in Figure 
62 

● MEC is connected to Internet  

● “V2XCom-11pRSU” modules receive V2X messages from the RSUs 
and push them to the MQTT broker 

● “V2XCom-11pRSU” modules are subscribed to their forwarding topic 
of the MQTT broker, receive V2X messages from these topics and 
forward them to their respective RSUs 

● “V2XCom-CV2XRSU” module receives V2X messages from the LTE 
network and pushes them to the MQTT broker 

● “V2XCom-CV2XRSU” module is subscribed to its forwarding topic of 
the MQTT broker, receives V2X messages from this topic and 
forwards them to the LTE network 

● All “V2XCom-*” modules check the signature of incoming messages 
and drop all non-compliant messages 

MEC is 
operative 
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● “MQTT broker” is configured with all necessary topics and distributes 
messages 

● “V2X forwarder” module is subscribed to all incoming V2X messages 
MQTT topics and with their new information updates the LDM (Table 
14) 

● The forwarding rules table is configured with forwarding rules related 
to Region of Interest (RoI) and type of radio technology 

● “V2X forwarder”, on reception of new messages, forward them to 
cooperative cars according to the forwarding rules table 

● “Certificate Revocation Decision” module receives alarms from 
OBUs 

● “Certificate Revocation Decision”, the algorithm to decide if an alarm 
is critical enough to revoke the certificates of a vehicle is out of the 
scope of the project. For demonstration purposes, we will activate 
the revocation manually.  

● “Certificate Revocation Decision” is able to inform the “Certificate 
Revocation List Distribution” module about revocation decisions 

RSUs network  ● Two RSUs are connected to the Ethernet network with their 
respective VLAN 

● Two RSUs are forwarding V2X messages to and from 802.11p and 
Ethernet interfaces 

RSUs network is 
operative 

LTE network ● The small cell is connected to the Ethernet network within the same 
VLAN, which connects them to the MEC and to dRAX 

● dRAX is operating and controlling the small cell 

● vEPC is operating in the MEC and is has Internet connectivity 

● vEPC provides connectivity to the OBUs while they are accessing to 
Internet and to the “V2XCom-CV2XRSU” module in the MEC 

LTE network is 
operative 

OBU “LTE-Uu 
only” 

● OBU is connected to the anti-hacking device as in Figure 63 

● OBU can reach the MEC, PKI servers and backend through the 
LTE-Uu interface 

● OBU is able to enroll, to be authorized and download ATs from PKI 
servers using the “PKI client” 

● OBU is able to store private keys in the HSM 

● OBU is able to generate, transmit and receive signed V2X messages 
through the LTE-Uu interface 

● OBU is able to detect non-compliant V2X messages 

● OBU is able to detect a tampering attack 

● “Alarm notification” module is able to transmit alarms to the Backend  

● “Traffic avoidance” module is able to choose at what time is best to 
change the AT and notify the “PKI client” to do so 

OBU transmits 
and receives 
signed V2X 
messages 
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● The “Facilities applications” (Demo backend client) module is able to 
reach the backend LDM server to show results to the user and to 
trigger attacks 

● The user controlling the demonstration testbed through a laptop is 
able to connect with the backend LDM server 

OBU “LTE-Uu 
+ 802.11p” 

● As the OBU “LTE-Uu only”, but the transmission and reception of the 
signed V2X messages uses the interface 802.11p instead of the 
LTE-Uu 

OBU transmits 
and receives 
signed V2X 
messages 

Table 13: Check list of initial requirements to set up the V2X communications testbed. 

 

 

Figure 62: Architecture of MEC modules and connections. 

 

Component Parameters 

RSU ● RSU identification 

● Coverage area 

Neighbor 
cooperative car 

● Station ID (can be a pseudonymous and change along time) 

● Geographical coordinates 

● Flag: 802.11p/LTE 

● RSU ID at which is attached (only for 802.11p connected OBUs) 

● IP address (only for LTE connected OBUs) 

● Flag: Valid AT / Non valid AT 

● Last seen timestamp 

● Type of vehicle 

Table 14: LDM structure. 
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Figure 63: Architecture of connected car modules. 

  

3.2.3.2 Interoperability between different radio technologies 

The use case of “Interoperability between different radio technologies” supposes that cooperative cars 
already have ATs supplied by a correct registration into the PKI system and is demonstrated according 
to Figure 64 and Figure 65. 

We have a system where all vehicles transmit CAM messages with a transmission frequency of 10 Hz, 
that need to be received by neighboring vehicles.  

There are two different cases: 

i) when these CAM messages are transmitted from a vehicle which has 802.11p and LTE-Uu 
(Figure 64)  

ii) when the V2X messages are transmitted from a vehicle which only has LTE-Uu radio interface 
(Figure 65). 

In case i), CAM messages are transmitted through the 802.11p interface, a real V2V communication 
interface, which enables neighboring vehicles under coverage to receive these messages. 
Nevertheless, vehicles “LTE-Uu only” or those that are far away do not receive them. The demonstration 
consists in doing that these vehicles also receive the messages using the forwarding mechanism 
through the MEC and the radio infrastructure. 

The demonstration procedure workflow is: 

1. One 802.11p vehicle transmits a compliant CAM which is received by the surrounding 802.11p 
vehicles and by the 802.11p RSU covering the area, for example RSU1 (note that in the testbed 
we have two RSUs: RSU1 and RSU2, covering two regions). 
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2. RSU1 forwards the message to its controller “V2XCom-11pRSU” module running in the MEC, 
which checks its validity. 

3. If the message is non-compliant, it is dropped. 
4. If the message is valid, it is sent to the “Forwarder” module, also in the MEC, using the MQTT 

broker. 
5. The forwarder module, updates the LDM database of the MEC and checks the current 

forwarding policy. 
6. The forwarding policy for our testbed is configured in such a way that messages received 

through an 802.11p interface, have to be forwarded to all “LTE-Uu only” vehicles and to all 
vehicles of the other region. 

7. 7-Therefore, the “Forwarder” checks the LDM to consult the identifiers of other regions’ RSUs 
(in our testbed there is only RSU2) and, using the MQTT broker, forwards the CAM message 
to the “V2XCom-11pRSU” module controlling RSU2. 

8. Also, the “Forwarder” checks the LDM to consult the “LTE-only” vehicles. Then, it forwards the 
CAM message and a list of all “LTE-only” vehicles that need to receive a copy of it, to the 
“V2XCom-CV2XRSU” module controlling V2X messages transmitted through the LTE network. 

9. “V2XCom-11pRSU” module controlling RSU2 forwards the message to RSU2, which in turn 
broadcasts the message in Region 2 and it is received by 802.11p vehicles. One single 
message is sent from RSU2 because 802.11p is able to perform broadcast addressing.  

10. “V2XCom-CV2XRSU” module controlling the LTE network transmits one copy of the message 
to each of the vehicles on the list. This transmission is done using the IP addresses of “LTE-
Uu” only vehicles, which is stored in the LDM. We need to transmit one copy of the message 
per vehicle because the majority of LTE-Uu operators do not allow multicast transmissions.  

11. The testbed user can check that all vehicles see the other ones using a computer connected to 
the backend LDM server (Figure 66). 
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Figure 64: Workflow of use case “Interoperability between different radio technologies” when the transmission is 
initiated from a vehicle provided with 802.11p and LTE-Uu interfaces. 

 

In case ii), CAM messages are transmitted through the LTE-Uu interface of an “LTE-Uu only” vehicle. 
These messages are not directly received by any other vehicle. All of them need to be forwarded through 
the MEC and the radio infrastructure. The demonstration consists in doing that all the vehicles in the 
testbed receive messages transmitted by LTE-Uu only vehicles. 

The demonstration procedure workflow (Figure 65) is completely like the one of case i) with only these 
changes: 

1. The transmission of the CAM message is done by “LTE-Uu only” vehicles. 
2. The “Forwarder” module in the MEC forwards the message to all RSUs of the testbed. 
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Figure 65: Workflow of use case “Interoperability between different radio technologies” when the transmission is 
initiated from a vehicle only provided with LTE-Uu interface. 

 

 

Figure 66: HMI to see the neighbors of one vehicle. 

 

3.2.3.3 Attack on the V2X Message Transmission 

The use case of “Attack on the V2X Message Transmission” supposes that cooperative cars already 
have ATs supplied by a correct registration into the PKI system. All vehicles transmit CAM messages 
with a transmission frequency of 10 Hz, that are received by neighboring vehicles and fixed 
infrastructure. On reception of these messages, the receiver vehicles and the MEC check the digital 
signature of the message. If the message is correct, it is sent to the applications running into the device. 
In our testbed, we have developed a user interface, through the backend LDM server, that allows the 
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testbed user to see the neighbours of one vehicle (Figure 66) and also, to trigger attacks using specific 
buttons (Figure 67). It is possible to generate the 4 different V2X message attacks described in section 
3.2.1 (non-signed messages, messages signed with a non-valid certificate, replayed messages and 
non-authorized messages). The result can be seen using the same user interface. 

 

Figure 67: Interface to trigger V2X message attacks. 

 

Figure 68 and Figure 69 show the workflow of the attack response when the receiver of the non-compliant 
message is a vehicle. On the other hand, Figure 70 and Figure 71 describe the workflow of the attack 
response when the receiver of the non-compliant message is the MEC.  

The demonstration procedures workflows depend on the type of attack, and they are described below: 

a) Non-signed messages: 

1. The attacking vehicle transmits a non-signed message. 
2. The receiver device, either an OBU or the MEC, simply discards the message.  

 
b) Messages signed with a non-valid certificate: 

1. The attacking vehicle transmits a message signed with a certificate not generated by the 
Authorization Authority of the Caramel PKI system. 

2. The receiver device, either an OBU or the MEC, performs two basic anti-reply operations which 
are checking if the message has already been received or if it is too delayed. As in this case 
the message is not replayed, the procedure jumps to the next step. 

3. The receiver device checks if the certificate is present in the Certificate Revocation List (CRL). 
As this certificate is false, we assume that it is not present in the list. 

4. The receiver checks the authenticity of the digital signature and the validity of the attached 
certificate. In the OBU, the attached certificate validation requires the assistance of the HSM 
where the Root Authority certificate, with which it is signed, is stored. In the MEC, as there is 
no HSM, this operation is uniquely done by the V2XCom-MEC module. 

5. In this use case, the previous operation returns that the certificate is not valid and an alarm is 
triggered for statistical purposes to the backend. 

6. The message is dropped. 

c) Replayed messages: 

1. The attacking vehicle captures a valid transmitted message and replays it. 
2. The receiver device, either an OBU or the MEC, performs two basic anti-reply operations which 

are checking if the message has already been received or if it is too delayed. In this case, as 
the message is replayed, the module “V2XCom-*” detects it. 

3. The message is dropped. 

Note: No alarm is triggered because the origin of the replayed message can be a retransmission 
from an RSU with overlapping coverage, or the message can be delayed due to network 
saturation conditions. 

d) Non-authorized messages: 

1. The attacking vehicle transmits a CAM message, stating that the vehicle is a “Emergency 
vehicle”, with a valid AT issued for a “Passenger car”. 
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2. The receiver device, either an OBU or the MEC, performs two basic anti-reply operations which 
are checking if the message has already been received or if it is too delayed. As in this case 
the message is not replayed, the procedure jumps to the next step. 

3. The receiver device, either an OBU or the MEC, checks if the certificate is present in the 
Certificate Revocation List. As this certificate is not present in the CRL, the procedure jumps to 
the next step. 

4. The receiver checks the authenticity of the digital signature and the validity of the attached 
certificate. In the OBU, the attached certificate validation requires the assistance of the HSM 
where the Root Authority certificate, with which it is signed, is stored. In the MEC, as there is 
no HSM, this operation is uniquely done by the V2XCom-MEC module. 

5. In this use case, the previous operation returns that the certificate is valid, but the type of vehicle 
does not match.  

6. An alarm is triggered for statistical purposes to the backend.  
7. The message is dropped. 

 

 

Figure 68: Workflow of use case “Attack on the V2X Message Transmission” - part 1 - when the detection 
procedure is performed in the OBU. 
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Figure 69: Workflow of use case “Attack on the V2X Message Transmission” - part 2 - when the detection 
procedure is performed in the OBU. 
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Figure 70: Workflow of use case “Attack on the V2X Message Transmission” - part 1 - when the detection 
procedure is performed in the MEC. 
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Figure 71: Workflow of use case “Attack on the V2X Message Transmission” -part 2- when the detection 
procedure is performed in the MEC. 

3.2.3.4 Tracking of vehicles by sniffing sent messages 

V2X messages are signed by an Authorization Ticket (AT) that uniquely identifies the sender vehicle. 
This creates a privacy issue, as a malicious sniffer could identify all the V2X messages sent with a 
specific AT and track the trajectory of that vehicle. One possible solution to avoid this tracking is to 
change the AT periodically. To minimize the probability of tracking, CARAMEL has developed a 
scheduler to choose which is the optimum moment to change the AT. This optimum moment depends 
on the V2X messages sent by the surrounding vehicles, as explained in the deliverable D4.1, section 
4.4.1 “Attack Mitigation with the AT Scheduler”. To apply this scheduler, it is necessary to have multiple 
moving vehicles in the road sending V2X messages. As this is not possible in the testbed, this algorithm 
will be demonstrated using a simulation tool. 

The tool simulates traces of multiple vehicles circulating in the city of Cologne, taken from the dataset 
already explained in D5.2. The AT Scheduler is installed in one of the simulated vehicles (target vehicle) 
and it receives the V2X messages of the surrounding vehicles (candidate vehicles). The test focuses 
on a region of Cologne that has a roundabout with multiple levels and intersections, as it poses a more 
challenging and interesting scenario compared to a straight road. 

Alongside the simulation, i2CAT has deployed a visualization tool that allows to see from the data stored 
during the simulation by the AT Scheduler logs the positions of the cars in the simulation (taken from 
the simulated V2X messages), the position of the target car, the AT score, and when the AT scheduler 
decides to change the AT based on the previous variables. Figure 72 shows an example of this 
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visualization. In the upper plot, we can see the position of the cars inside the simulated scenario. The 
green dot represents the position of the target car, which has installed the AT Scheduler, and the blue 
dots represent the other cars in the simulation. All the cars are sending V2X messages every 100 ms 
approximately. In the lower plot, we can see a blue line that relates the tracking score (Y axis) over the 
time of the simulation (X axis) and the green vertical lines represent the timestamp where the AT 
Scheduler system has decided to request an AT change. In this example, the tracking score is always 
0. 

 

Figure 72: Visualization of the tracking avoidance tool showing a) the position of the target and surrounding cars 
(plot on the top) and b) the tracking score and the times when an AT change has been requested (plot on the 

bottom). 

 

3.2.4 Initial results in lab 

 

The testbed has been deployed in the lab (Figure 73). Its components are: 

• 1 NUC computer acting as a MEC. 

• 1 NUC computer acting as a dRAX. 

• 2 RSUs. 
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• 1 small cell. 

• 4 OBUs with 4 anti-hacking devices, plus 1 OBU for backup. They need to be feed by power 
supplies (in lab) or batteries (outside lab). 

• 1 LTE router to have access to Internet. 

• 1 Ethernet switch and cabling. 

• 3 servers hosted in Internet: PKI, monitoring backend and LDM backend. 

 

 

Figure 73: General picture of the testbed with GPS antennas going out through the window. 

 

Integration and problems that have appeared: 

• The modules hosted in MEC (V2XCom, vEPC, forwarder, PKI client, Certification revocation 
software and LDM) have been successfully integrated in virtual containers and connected 
through virtual networks inside Kubernetes. The configuration is stable. 

• The RSUs are correctly connected to their V2XCom modules hosted MEC using Ethernet 
VLANs. They correctly forward messages between 802.11p and Ethernet interfaces. The 
configuration is stable. 

• The LTE network is formed by 4 different components: i) the UE which are the LTE modems 
integrated in the OBUs, the small cells, the dRAX and the vEPC. Its configuration works but it 
presents instability problems that we have been unable to solve.  

o The project acquired 2 small cells, but in the last month, one of them began to 
misbehave, it disconnected User Equipments (UE) that were already associated. For 
this reason, we decided to deploy a testbed with a single small cell. The demonstration 
is not affected as it is possibly to demonstrate all CARAMEL use cases. 

o When several UEs try to get associated to the network at the same time, the LTE 
network does not associate them correctly. They do not have access to Internet. We 
have found that we have to activate the UEs sequentially, one by one. Nevertheless, 
after some uncertain time (several hours), the network disconnects them and the UEs 
need to be restarted. The software to control the network is, for one hand the 
Accelleran's dRAX v2.1 (Cloud-Native Open RAN software) and, for the other hand, 
the open source vEPC (virtual Evolved Packet Core) Open5GS v2.1.7. Our impression 
is that some of these two components has some bug, probably the vEPC. 

• The software module V2XCom is properly integrated in the OBU hardware and connects to its 
Hardware Security Module (HSM). This has been one of the main problems of the integration 
since V2XCom relays in Vanetza open-source framework, which is very wide and not optimized 
for small capabilities devices like the OBU. Nevertheless, the integration has succeeded and 
works correctly. 
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• The integration of the software modules inside the anti-hacking device has been done correctly: 
The modules MQTT broker, PKI client, AT scheduler, Demo backend client, Tamper detector 
and Alarm notification client have been correctly integrated on the anti-hacking device platform 
specified in deliverable D5.5. All applications run correctly except for the AT scheduler that 
requires a larger computation capability than the provided by the Coral Dev platform. This 
aspect was already discussed in D5.3 "Machine Learning based Detection of Attacks into Anti-
Hacking Device". 

• The Wi-Fi connection between the OBU and the Anti-hacking device is done properly, uses the 
security functions of the standard 802.11, but messages are not signed by HSMs. In the first 
design of the CARAMEL architecture, it was planned that messages transmitted between the 
OBU and the anti-hacking device, a part of the standard encryption system of the WiFi, they 
would be additionally signed by the HSM attached to each device. The problem is that the HSM 
of the anti-hacking device has not been designed to sign hundreds of messages per second, 
as it is the HSM of the OBU. Therefore, although this signature system has been programmed 
and tested, it is not used in the testbed. We propose that future commercial versions of this 
devices are connected by cable (Ethernet), instead of by WiFi. 

• The forwarder is correctly integrated with the 802.11p and the LTE networks. It can parse and 
generate V2X messages and forward them to OBUs connected through 802.11p or LTE 
networks. It also updates the MEC's LDM and the forwarding rules can be modified. 

• The alarms transmitted by the OBU are correctly integrated in the monitoring backend. This 
sever receives and understands all alarms generated by OBUs. 

• The information transmitted from the OBUs at the LDM backend server is correctly integrated. 
This server, build for demonstration purposes, enables to show the lists of vehicle neighbors 
and trigger V2X messages attacks. 

• The V2XComm module is correctly integrated with the PKI client. Both are able to 
manage/interchange/request digital certificates and Authorization Tickets (AT) and inform if an 
AT is revoked. 

• The AT scheduler is correctly integrated with the V2XCom module. The scheduler receives 
CAM messages from the V2XCom module and decides when is best to change the AT. Then, 
it notifies the V2XCom to change AT. 

• The open-source framework Vanetza has arisen multiple problems, basically related with the 
management of the security functions: 

o Implementation of the V1.3.1 version of security: The base project of Vanetza was using 
the obsolete and currently deprecated version of the ETSI v1.2.1 to implement the 
security on the sent messages. With the CARAMEL project, there has been 
implemented the v1.3.1 in retro compatibility with the previous ones. This new version, 
which also regards of Release 2 of the ETSI C-ITS standard, uses the same data 
structures as the IEEE 1609.2 protocol. This means that opens a window of 
compatibility with the WAVE stack. 

o Aligned the ASN.1 files version: The ASN.1 files describing how the data structures 
must be when serializing, usually get problems with the alignment of the versions of all 
of the ASN.1 files. Usually, all the standards are not published altogether, and getting 
all the asn.1 files with the perfect alignment can pose a huge challenge. 

o Fix serialization problems regarding the asn1c generated files: The asn1c utility 
generates plain C code regarding the ASN.1 described data structures it has been run 
with. The problem with the usage of this library with complex structures, like the ones 
described with the ETSI C-ITS or IEEE 1609.2, is that the memory allocation with the 
usage of multiple levels of pointers pointing to other pointers, makes any code 
developed with such a solution prone to segmentation faults and, obviously, huge 
memory leaks.  

o HSM library endianness: The processors used within the HSM use little-endian 
codification when transmitting numbers higher than one byte. This has posed a problem 
for the project because external modules assumed a big endianness on the codification. 
Along with this, an extra layer of base64 encoding had to be added to ensure the byte 
arrays are properly sent to the python modules. 
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Implications of the known problems: 

• Problem of having an LTE network unstable: Vehicles need an LTE connection to get access 
to the servers hosted in the cloud, and also to use this connection to transmit V2X messages 
in case of not having a native V2X radio interface (802.11p, LTE-PC5, 802.11bd or NR-V2X). 
We could have used a commercial LTE operator for the first purpose of accessing to the Internet 
servers, but in order for the MEC be able to push V2X messages to the OBUs over LTE, it is 
needed to know their IP addresses, which are not provided by commercial operators. So, the 
reason of having deployed our own LTE operators if having knowledge of the IP addresses of 
the OBUs in the system. Commercial operators use Network Address Translators (NAT) at the 
border of their network which masquerade the IP addresses of the OBUs. In case of willing to 
use a commercial LTE operator for V2X communication, it will be necessary to redefine the 
network architecture, which can introduce additional delays. 

• The capacity of the OBU and the Anti-Hacking device: The applications that CARAMEL plans 
to execute in both, the OBU and anti-hacking device, require more computational capability and 
memory. In the case of the OBU, the V2XCom module, based in Vanetza software, is not 
designed to be embedded in automotive computers. The solution is to increase the capacity of 
the OBU or optimize the V2XCom code. In the anti-hacking device, the main problem is that all 
basic required applications are already using all its computational capacity. When the AT 
scheduler starts, all the system is slowed down. With this architecture, the change of AT has to 
be scheduled without an intelligent algorithm. 

3.2.5 Deployment in Panasonic premises in Langen 

On the days 8th and 9th of June, pillar 2 testbed on V2X communication was deployed in the parking 
lot of Panasonic premises in Langen, Germany (Figure 74). 

 

 

Figure 74: General view of the deployment of pillar 2 in Langen (Germany). 

 

The deployment behaved in the same way than the test in the lab: 

1. The MEC was deployed correctly with its virtual containers running (Figure 75 and Figure 76). 



CARAMEL (No. 833611)                                           D6.3                                               June 2022 
 

 

Page 83 of 117 

 

 

 

Figure 75: MEC, dRAX and small cell deployed in Langen. 

 

 

Figure 76: Kubernetes pods running the V2X Stack. 

 
 

2. The RSUs were deployed and connected to the MEC through the switch (Figure 77) 

 

Figure 77: RSUs. 
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3. The LTE network components were deployed: dRAX and small cell can be seen in Figure 75, 
the vEPC OpenG5S running in the MEC (Figure 78). Also, Figure 79 shows the radiofrequency 
parameters of the small cell and Figure 80 shows the 3 UEs of the OBUs associated to the 
network. 

 

Figure 78: Open5GS pods running in Kubernetes. 

 

Figure 79: Small cell radio configuration. 

 

Figure 80: 3 UEs connected to the Small Cell. View from dRAX Dashboard. 
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4. Four different OBUs with their respective anti-hacking devices plus power sources were 
configured and deployed (Figure 81). In order to be able to configure the OBU and the anti-
hacking device, previously to its operative phase, we connect the anti-hacking device with an 
Ethernet cable to the switch. In this way, we can enter into these two devices with a ssh and 
perform all necessary setup. After this phase, the Ethernet cable is unplugged and the OBU 
can work standalone. 

 

Figure 81: OBU with anti-hacking device and batteries. 

 

After performing several tests, we reached to the same conclusions as in the lab: 

• The RSUs network is stable. 

• The LTE network presents problems of instability. UEs get disconnected after a random time. 

• The integration between the V2XCom and the OBU's hardware and HSM works correctly. 

• The integration between the V2XCom and PKI servers works correctly, and messages are sent 
correctly signed. 

• The interoperability between 802.11p and LTE technologies works correctly. 

• The integration between the V2XCom and the monitoring and LDM servers works correctly. 
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3.3 Tamper attack on Vehicle’s OBU: attack use case description 
and assessment 

As introduced within the Deliverable D2.1, the attacks on-board systems could also be physical if the 
attacker gets physical access to the On-Board-Unit (OBU) by accessing the car. As a point to have in 
mind, the attacker could even have acquired another OBU (e.g., aftermarket sample) with the aim to 
study potential vulnerabilities beforehand.  

Since the OBU is the gateway to the vehicle’s network communications, its protection should be 
mandatory and the top priority, so, as to prevent it from becoming the weakest link in the vehicle’s 
security chain. 

Hardware securitization has been carried out by identifying the potential threats on the OBU and then 
designing a protection strategy to avoid attacks on the identified vulnerabilities. The design of the V2X 
unit from the OBU is done having in mind HW and SW point of view, and is self-protected against 
different attacks shown in the Table 15 below: 

Title Description Solution developed 

HW tamper attack The attacker can get physical access to an OBU 
by accessing the car. The attacker could also 
have acquired another OBU (e.g., aftermarket 
sample) in order to study potential vulnerabilities 
beforehand. 

i) Open box detection switch. 
ii) Wire-mesh protection of secure 
signals. 
iii) Zeroization of cryptographic 
keys. 
 

SW tamper attack The attacker gets access to the internal ports of 
the OBU to download malicious software 

Implement trust of chain (secure 
boot) 

HW manipulation The attacker gets access to the internal OBU and 
replaces HSM and/or memory to use malicious 
software downloaded into them. 

Mutual authentication 
Chain of trust 
Secure boot 

Table 15: Summary of possible attacks with direct access at the OBU. 

 

When some of the previous attacks are performed, the OBU unit is disabled for its normal use and there 
will be impossible to send any V2X signed message. Then the system detects the attack and informs 
the MEC that the OBU has been compromised. 

3.3.1 Use case description (UC2.3) 

In this section in advance, we will focus on the two use cases defined for the final project demonstration 
at the Panasonic parking lot in Germany, which are focused on the HW as the entrance door to the 
system. This means that the attacker is able to get physical access to the OBU and exploit 
vulnerabilities. 

The use case for the tamper attack on vehicle’s OBU implies that the attacker tries to get access to the 
OBU electronics in order to manipulate it. D3.6 chapter 3.6.3 explain the different countermeasures and 
anti-tamper techniques developed to detect tamper attacks. 

In order to detect different hardware attacks, we have developed an active protection covering different 
sensible areas: 

• Open enclosure: detected by a switch 

• System clock oscillators: protected by epoxy resin 

• V2X signals: protected by active wire-mesh 

• GNSS signals: protected by an enclosure with active wire-mesh 

Although attacks to the system clock, V2X signals and GNSS signals are destructive tests, the use case 
for tamper attack will be focused in the open enclosure. 
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Figure 82, extracted from D2.4 “System Specifications and Architecture”, shows the involved processes 
and actors. 

 

Figure 82: Workflow Use case for the tamper attack on vehicle’s OBU. 

Involved Actors: 

• Attacker: The attacker is a person who opens physically the OBU enclosure. 

• Cooperative car: In the demonstration scenario, the cooperative car is represented by an OBU 
plus its anti-hacking device. It is connected to a laptop by WiFi, from where it is possible to 
visualize the messages received from other cooperative cars. 

• Onboard unit (OBU): Is the communication unit inside the car, and it has the hardware and 
software needed for V2X, LTE and WiFi secure communication, as well as secure message 
signatures and secure keys management. 

• Fixed infrastructure: The PKI infrastructure has the servers in ATOS network which are 
reachable using a standard Internet connection. It is composed of multiple virtual containers 
executing the following processes: the forwarding of the certificates identifying the Root, 
Enrolment, Authorization and Revocation Authorities, the enrolment process, the authorization 
process and the revocation process. At the end of the whole process, the PKI client, executed 
in each cooperative car, obtains a group of ATs which are used to sign V2X messages. 

• MEC: It is a computer with virtual containers executing the following processes: one V2X 
communication protocol stack for each RSU and for the LTE network, the virtual Evolved Packet 
Core (vEPC) of the LTE network, the V2X forwarder, the Local Dynamic Map (LDM), the MQTT 
broker, the application that receives alarm notifications from cooperative cars and from other 
MEC processes, the application which decides if a cooperative car will have its certificates 
revoked (for demonstration purposes, it is an user interface where the user can choose between 
two options YES/NO) and the application responsible of the Certification Revocation List (CRL) 
distribution. 

• Hardware Security Module (HSM): The HSM is the hardware element brought into the OBU 
microcontroller and is the responsible of storing private keys and sign messages. 

 
 

3.3.2 Use case test setup 

The testbed for tamper attack test setup is the same used for the attack on the V2X message 
transmission (see section 3.2.2): it will be deployed in Panasonic facilities and will be composed of three 
different sites plus several servers reachable through Internet and laptops to activate and visualize the 
demonstrations. This is because the tamper attack will be detected and the attack notification to the 
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MEC works in a similar way that the V2X message transmission attack and needs the same 
infrastructure. 

 

Figure 83: Testbed Layout. 

The tamper attack on the vehicle’s OBU use case will be demonstrated by opening the OBU enclosure, 
based on the use case description on D2.4 (UC2.3). 

 

Figure 84: CARAMEL OBU with enclosure showing antenna connectors. 

3.3.2.1 HW tamper attack workflow and evaluation 

The procedure workflow when a tamper attack is detected in the different protected areas is the same. 
In the demonstration, we will detect the attack when the enclosure is opened: 

1. In normal operation, the anti-hacking device pings the OBU in order to check there’s no 
alarm. 

2. An attacker opens the OBU’s enclosure. 
3. The detection switch detects the enclosure opening and triggers an alarm. 
4. The processor detects the alarm and internal keys are deleted immediately. 
5. Access to the HSM to sign messages is not allowed because internal keys are deleted. 
6. Anti-hacking device is not able to communicate with the OBU, assuming the OBU is 

compromised, and sends an alarm notification to the MEC. 
7. The MEC notifies the attack to the PKI server. 
8. PKI decides if the vehicle’s certificate must be revoked. 
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9. The MEC also sends an alarm notification to the backend for statistical purposes. 

 

Figure 85: Workflow of the Use Case “Tamper attack on OBU”. 

 

3.3.3 Test Results  

With the test setup described, key files needed to communicate with the HSM are located in /v2xconf 
folder. These files are: 

• keyset0: used for normal operation with the HSM 

• keyset1: used for V2X private keys injection 

When we open the box enclosure, we can see the files containing the communication keys are 
permanently deleted (Figure 86), so communication with the HSM becomes impossible and the OBU is 
not able to sign any message with the secure keys. 

 

Figure 86: OBU’s Linux command console showing keys before and after activate tamper switch. 
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Once the keys are deleted, a tamper alarm notification is seen also in the frontend/dashboard, as it can 
be observed in Figure 87. 

 

Figure 87. Frontend/dashboard’s notification showing the tamper attack . 
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3.4 Certificate Revocation: attack use case description and 
assessment 

3.4.1 Description  

In this use case we aim at demonstrating the mechanism that revokes certificates from malicious actors 
once they are detected by the MEC. The reasons behind the decision revocation request are out of the 
scope of CARAMEL but, for demonstration purposes, we assume that attacks on V2X messages do not 
revoke certificates, and a GPS spoofing attack would revoke the certificates.  

As the GPS spoofing attack is demonstrated using a simulator, also for demonstration purposes, we 
have prepared a user interface that can trigger the alarm in the OBU as if the vehicle was under GPS 
spoofing attack (Figure 88).  

Pushing the button “GPS spoofing attack”, produces an alarm in the OBU, that informs the “Certificate 
Revocation Decision” module in the MEC, which decides to revoke the certificates of the vehicle 
producing the alarm. 

 

Figure 88: User interface with a button to simulate a GPS spoofing attack in the OBU, which produces an alarm 
that revokes the certificates of the vehicle under attack. 

The revocation of a certificate and the consequent broadcasting of the updated Certificate Revocation 
List (CRL) is the process which allows vehicles to recognize and discard messages transmitted from 
malicious actors. An updated CRL is issued when the PKI servers receive a request from the MEC 
identifying a new vehicle identity to revoke. 

This use case is the continuation of the UC2.2 and therefore the involved actors are the same: attacker, 
cooperative car, fixed infrastructure, PKI infrastructure, MEC, anti-hacking device.  

For more details, please, refer to section 3.2. 

3.4.2 Use case setup 

The use case setup is the same as the one presented in UC2.2.  

Two geographical regions equipped with Accelleran Small Cells and 802.11p RSU, connected to the 
VLAN switch, the MEC and the dRAX. Two OBUs, one with only LTE-Uu radio and the second with 
802.11p and LTE-Uu radio interfaces, the PKI servers, the Backend server, and the laptops.  

For more details on the test setup of the use case, please, refer to section 3.2. 

3.4.3 Use case workflow 

In the following Figure 89, it is explained the Certificate Revocation workflow: 
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Figure 89: Certificate Revocation workflow. 

 

3.4.4 Results 

3.4.4.1 Requirements 

Secure association. The system shall be able to establish a communication channel between itself 
and another ITS station such that they can exchange messages according to negotiated security 
parameters, i.e., message digital signature using Authorization Tickets must be applied for V2-X 
communication. 
Identity Management. The system shall support simultaneous change of communication identifiers 
(like station ID, network ID, MAC address) and credentials used for secure communications, within 
the ITS station. 
Secure transmission of ITS messages (CAM, DENM) between vehicles (V2V or V2I2V) and 
between vehicles and infrastructure (V2I), using BTP and GeoNetworking protocols. Every ITS 
transmitted message shall be signed using one Authorization Ticket. 
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3.4.4.2 Successful end condition  

 
● PKI servers produce an updated CRL containing all the identities assigned to the revoked 

vehicle. 
● Vehicles drop fake messages and prevent safety applications from being misinformed. 
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4 Pillar 3 scenario driven attacks 

Apart from investigating the impact of CARAMEL's engine in robustizing the immunity of autonomous 
vehicles from cyber-attacks oriented towards the perception and communication layer, CARAMEL has 
also contributed solutions related to detecting and mitigating attacks at the charging layers of electric 
vehicles. Chapter 4 discusses the methodology developed, the use cases and the evaluation protocol 
followed to assess the efficacy of the mitigation strategies, developed in Pillar 3. 

4.1 Smart Charging Abuse: attack use case description and 
assessment 

The attacker(s) occupy (physically or remotely) the available charging stations starting and proceed 
timely in connection/disconnection actions creating an enormous load to the power grid. 

4.1.1 Introduction 

In this use case we aim at demonstrating a machine learning pipeline that is capable of detecting 
anomalies in communication between an EV charge station and its remote back office. 
Of the charge stations that are currently installed worldwide, a part consists of outdated hardware. 
These legacy charge stations can no longer always be updated (hardware or software) so that they 
meet the latest security standards. It is, therefore, possible for an attacker to either locally take over the 
charge station or to intercept the communication in one way or another and thereby, for example, be 
able to send false smart-charging control signals to such a charge station. 
It is therefore important to be able to remotely detect irregularities in the behavior of a charge station. It 
is typical for data from charging stations that these are relatively many messages, of which only a few 
can be labelled as outliers. To be able to detect these properly, a semi-supervised machine learning 
pipeline has been developed and its workflow can be seen in Figure 90. 

 

Figure 90: Overview of the demonstration pipeline. 

4.1.2 Involved actors 

The involved Actors are: 

• Attacker: In this test setup the attacker is represented by a Greenflux (GFX) employee who 
can: 

1) Tamper with a (virtual) charge station.  
2) Inject fake data in communication with back office. 

• EV: A physical EV is required to participate in a charging session. A simulator will not suffice 
because it cannot draw enough power, which would result in unrealistic data. 

• Charging Infrastructure: These are the other charge stations. During the test, these will 
generate data, but they are not the target of an actual attack. 
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• GFX Platform: This is the cloud platform that communicates with all charge stations. Incoming 
and outgoing messages are processed and enable remote control of the charge station. It also 
automatically forwards the incoming messages to the anomaly detection tool. 

• Anomaly detection tool: This is the semi-supervised machine learning pipeline developed 
within CARAMEL that should detect strange messages. It runs on a server in Berlin. 

• Operator: This is a person who operates the EV Portal and can thus manage the charge 
stations remotely. He is also able to disconnect from a compromised charge station. 

4.1.3 Machine learning (ML) pipeline test setup 

Test facility at GFX office in Amsterdam: There is a parking lot with 8 charge stations from different 
manufacturers next to the GFX office in Amsterdam. These charge stations can be used for various test 
purposes. During the test, one of the charge stations will be attacked. 

GFX Platform: The attacked charge station is connected to the platform. For each charge station, a 
certain sequence of messages is expected at a certain interval. 

Databases & API: Data from the charge stations is pre-processed, stored in one of the databases and 
forwarded via the platform APIs. 

ML tool: The ML tool processes incoming messages and determines whether there is unexpected 
behavior. If this is indeed the case, an outlier is recognized and reported to the operator. 

Operator: With an incoming alert, the operator will have to determine whether there is indeed an attack 
and, if necessary, he can break communication with the charge station and inform the corresponding 
CPO. 

4.1.4 Flow of activities 

The workflow is: 

1. Previous days to the attack: Data collection to be used as normal data for reference. 
2. On the day of the demonstration: Attack to the charge station. 
3. After attack: Sending the generated data to the ML tool in the same way. 
4. Result: If it works, it will be able to attack the charge station. 

4.1.5 Success end condition and test results 

Machine learning tools can detect: 

1. Data generated from tampered charge station. 
2. Fake data inserted by attacker. 

4.2 EV Scheduling Abuse: attack use case description and 
assessment (UPAT) 

4.2.1 Use case description 

This theoretical use-case aims to demonstrate the effectiveness of coordinated EV charging against 
cyberattacks, in a PC simulated environment.  

Consider that an EV load aggregator of a utility company tries to coordinate the charging of several 
EVs. Valley-filling task is a common objective that it can be achieved through coordinated charging. In 
the valley-filling problem, the goal is to flatten the given load demand profile of the aggregator as much 
as possible, by filling the overnight valley in the load demand with the demand caused by the EVs. Let 
𝑀 be the EVs that need to be charged over a charging time 𝑇, comprised of consecutive time slots such 

as 𝑇 = {1, …  𝑇}. The duration of each time slot is the same and equal to 𝛥𝛵. Let 𝑒𝑚(𝑡) be the energy 
charge of EV 𝑚 (𝑚 = 1, … 𝑀) at time 𝑡 ∈ 𝑇. The energy charge can range from zero to its maximum 

value 𝑒𝑚(𝑡). Let 𝑒𝑚(𝑡)  =  [𝑒𝑚(1) … 𝑒𝑚(𝑇)]𝑇 ∈ 𝑅𝑇be the charging profile of vehicle 𝑚. Moreover,  we 
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define set 𝐸𝑚, such as 𝑒𝑚 ∈ 𝐸𝑚 =  {𝑒𝑚 ∶  𝑒𝑚 
𝑇  1 =  𝑅𝑚  , 0 ≤  𝑒𝑚 (𝑡)  ≤  𝑒𝑚(𝑡), ∀𝑡 ∈ 𝑇}, where 𝑅𝑚 is the 

total energy needed by EV 𝑚. The desired energy 𝑅𝑚 is equal to: 

𝑅𝑚 =  
(𝐵𝑚 × (𝑠𝑚(𝑇)  −  𝑠𝑚 (0))

 𝑐𝑚 𝛥𝛵
 

where 𝐵𝑚 , 𝑠𝑚 (𝑇), 𝑠𝑚 (0), 𝑐𝑚 and 𝛥𝑇 are the battery efficiency, the expected state of charge at the end of 
charging horizon, the initial state of charge, the charging efficiency and the time slot duration of charging 
EV 𝑚, respectively.  

Finally, the optimal EV charging problem can be defined as follows: 

 

where energy costs 𝐶𝑡  (𝑥)  =  𝑥2 /2 are convex and differentiable for all 𝑡, while 𝑑(𝑡) capture the based 
load for the EV aggregator.  

A decentralized infrastructure supporting the communication between the aggregator and the EVs is 
preferable to tackle the optimal EV charging problem, due the lower computational requirements. CVX 
software, Frank-Wolfe (FW), Projected Gradient Descent (PGD) or Alternating Direction Method of 
Multiplies (ADMM), can be utilized to estimate the optimal charging profile for each EV. 

FW and PGD algorithms [14][15], summarized in Algorithm 1 and 2, are state-of-the-art decentralized 
charging protocols that try to minimize the EV charging problem under FDI attacks on the individual 
EVs. They both directly solve the optimal problem in a decentralized manner. ADMM based approach 
[16][17], summarized in Algorithm 2, reformulates the EV charging problem to a decentralized exchange 
problem between EVs and the aggregator.  

According to Algorithm 2, 𝐹𝑎(⋅) is the aggregator’s convex objective function, 𝑒𝑎 is the aggregated 

charging profile of EVs, 𝐹𝑚(⋅) is the convex objective function of the individual EV, 𝐸𝑎 is the constraints 

set of the aggregator, 𝜌 > 0is the augmented Lagrangian multiplier, 𝑒𝑎𝑣𝑔is the average charging profile 

of the agents (both EVs and aggregator) and 𝑢is the dual variable. Parameter 𝛾is in fact the trade-off 
between the objective goals of the aggregator and the EVs, represented by the two objective functions. 
It should be noted that in the valley-filling task, the individual EV goals should be ignored. In that case 
𝛾 =  0 and 𝐹𝑚 =  0. Moreover, the main objective of the aggregator is, in fact, to minimize the EV 
charging problem. As such, 𝐹𝑎 = 𝐶({𝑒𝑚}). Finally, 𝐸𝑎 =  ∅. Both the state-of-the-art decentralized 
charging protocols are depicted in Figure 91.  

 

Figure 91: Decentralized charging protocols with FW and ADMM. 
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The three approaches are in fact iterative methods, in which the aggregator and the EVs constantly 
exchange their estimations in order to minimize the EV charging problem. A malicious cyber attacker 
can take advantage of it, since it can modify what EVs send on every iteration and destroy the entire 
charging process. This modification could be performed by the instalment of a malicious software on 

EVs. As such, we define the FDI attack on EV 𝑚 as the modification of 𝑒𝑚
𝑘(𝑡) at iteration 𝑘. This attack 

has an impact on the performance of the two protocols, since the quantities 𝑔𝑘, 𝑒𝑎𝑣𝑔
𝑘 and 𝑢𝑘 also 

change. Note that 𝑡 must belong to the time where 𝑚 was to be charged, namely starting over midnight 
and ending early in the morning (valley-filling). Moreover, according to [16], if 𝑒𝑚(𝑡)  < 0, then EV 𝑚 is 
feeding energy (discharge) back to the power grid.  

Motivated by that, and by the modelling of FDI attacks [18] (as adding a bias to an estimated quantity), 
we define two types of attacks aiming to discharge, instead of charge, the EVs: 

 

With Attack 1, the compromised vehicle simply discharges, while in Attack 2 the vehicle may become 
non-operational since it is required to feed back to the grid an amount of energy equal to that of its 
desired energy. 
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4.2.2 Use case experimental setup 

We evaluated the three protocols using the 2014 average residential load profile in the service area of 
South California Edison as the base load 𝑑(𝑡). A day long charging horizon time starting at midnight, 
was divided into 𝑇 =  96 time slots and thus, 𝛥𝑇 = 15𝑚𝑖𝑛.We choose 𝑀 =  80, 𝑒𝑚 (𝑡) =

3.45𝑘𝑊ℎ, 𝑐𝑚 = 0.9𝑘𝑊ℎ, 𝑠𝑚 (0)  ∼  𝑈(0.85, 0.95) where 𝑈 is the uniform distribution.  

The parameters were selected according to the state-of-art approaches [14][15][17], while choosing a 
different 𝑀 [14] (i.e., 59 or 120), doesn’t seem to seriously affect their performances.  

CVX solver is used to tackle (1) in a centralized manner and to minimize the sub-problems of the three 
Algorithms. 
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4.2.3 Use case evaluation 

In Figure 92, the total load demand produced by the three protocols and the centralized scheme of CVX, 
without FDI attacks, is depicted. Total (or aggregated) load demand is defined as the sum of aggregator 
load demand and the charging profiles of EVs. It is obvious that valley-filling has been achieved, since 
the load demand curve has been flattened and EV can be charged efficiently during night. In the 
following, we apply the two types of attacks. We assume that a subset of EVs can be compromised, 
and we measure the relative total load demand error between the decentralized protocols respectively 
and the intact centralized scheme of CVX, which acts as the baseline protocol.  

In Figure 93 and Figure 94, the total demand under the attacks on 40% of EVs is presented. It is evident 
that the performance has been seriously degraded since the curve does not flatten at all. Clearly, the 
impact of attacks affects the overnight charging.  

However, in all cases, except Figure 94(a), the corresponding curves are close enough to that of Figure 

92. In Figure 94(a) and under Attack 2, FW seems that fails to perform the valley-filling task, as the 
resulting total load curve is clearly affected by the attack. Furthermore, we demonstrate in Table 16 and 
Table 17, the relative total demand errors, under the two types of FDI attacks on 10%, 20%, 30% and 
40% of EVs, respectively. Under both Attacks, and as expected, the errors of the protocols are quite 
small and become larger as the number of compromised EVs increases. The value of the error 
characterizes the impact of the attack which is reduced and significantly mitigated when the error is 
small.  

At this point it should be noted that the ADMM error in the Attack 1 scenario where the 30% and 40% 
of the vehicles are attacked, is the smallest one between those achieved by the other two 
approaches, while when 10% and 20% of the vehicles are attacked the errors of all the 
approaches are almost identical.  

In the Attack 2 scenario, FW error is by far the greatest, and therefore, the valley-filling task totally fails 
to be performed. Once again, ADMM seems to outperform PGD, since its error is very small and remains 
almost constant, regardless of the number of attacked vehicles.  

In all cases, ADMM and PGD have been executed efficiently succeeding to perform the valley-filling 
task during EV charging, proving their robustness under different FDI attack scenarios. The fact that the 
robustness has been achieved without any extended modification of the initial schemes, is crucial to the 
safety and economic cost of EVs, since special hardware doesn’t seem to be an important requirement. 

 

Table 16: Error of EV charging under Attack 1 (10−3). 
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Figure 92: Total or aggregated load demand with CVX, FW, PGD and ADMM, without attack. 

 

 

Figure 93: Total load demand under Attack 1. 

 

 

Figure 94: Total load demand under Attack 2. 
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Table 17: Error of EV charging under Attack 2 (10−3). 
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5 ANNEX: Threat Awareness Dashboard and Backend 

Infrastructure. 

Autonomous driving is an emerging safety-critical technology, where vehicle software is tasked to 
navigate based on data inputs, while at the same time defending against foreign malicious cyberattacks. 
While onboard attack detection and mitigation is important as the first line of defense, an external 
supportive cybersecurity platform can provide additional layers of security. Such platforms, called 
Security Operation Centers (SOCs), can provide important cybersecurity analytics, and can organize a 
faster attack response with relevant stakeholders. 

It would be rather optimistic to assume that in the future all vehicles will be equipped with the technology 
to detect any possible cyber-threat. Also, the detection of certain threat types could be unreliable, for 
instance due to sensor errors. This raises the need for a collaborative cybersecurity approach, with 
SOCs as aggregators and service providers. Attack detections can be collected from multiple vehicles 
on the street, cross-validated, filtered and assigned a confidence level. SOC service providers can then 
push their advanced threat intelligence back to their customers with a high degree of confidence. 

5.1 Demonstrator elements 

Within the framework of the CARAMEL project, Capgemini Engineering developed the following 
components. 

5.1.1 Backend 

The backend can monitor a fleet of vehicles, real-world or simulated. Vehicles can communicate with 
the backend to submit and retrieve data and threats. The backend collects threat information from 
multiple sources, analyses the data and assigns a confidence level to each threat based on the 
observation frequency and threat type. This enables a form of collaborative awareness, which improves 
the reliability of threat detection by crowdsourcing information from multiple vehicles. More information 
about the backend can be found in the document “D4.4 Report on the Fallback Actions for Minimal Risk 
Conditions.” This infrastructure was offered to all CARAMEL partners to support their respective 
demonstrators. 

5.1.2 Dashboard 

The main CARAMEL dashboard aggregates and displays all threats that are collected by the vehicles. 
For this demo, an additional in-vehicle HUD was created in the simulated environment to display threats 
that are retrieved from the backend. 

 

Figure 95: The CARAMEL dashboard with vehicle-specific threat display (left) and location-specific threat 
intelligence (right). 
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5.1.3 Simulated Environment 

To accelerate development and to recreate various scenarios, a simulated environment was generated 
using the CARLA framework replicating real-world driving conditions, including buildings, traffic signs, 
roads, etc. There, virtual vehicles can be deployed with simulated RGB and GPS sensors. To submit 
and retrieve application relevant data the simulation is connected to the internet. In addition, the 
communication takes place per the SIEP protocol as defined in the document “D4.4 Report on the 
Fallback Actions for Minimal Risk Conditions.” The required libraries are also installed in the 
environment. For ease of use-, demonstration-, and testing purposes the following supportive features 
were also integrated: 

• Keyboard-controlled traffic sign changes. 

• Keyboard-controlled tampering of traffic signs. 

• Threat alert visualization. 

• Built-in painting tool to manually tamper the traffic signs. 

• Automatic vehicle navigation along a predefined route. 

• Predefined regions where simulated GPS spoofing attacks take place. 

 

Figure 96: Vehicle navigating the CARLA virtual environment. 

 

Figure 97: Simulated threat display. 

 

5.1.4 Attack Detection & Generation - Sign Tampering 

An object detection system that allows the recognition of traffic signs was integrated into the simulation. 
The TensorFlow-based Object Detection API was used to process and infer the collected images. The 
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open-source AI model “Faster R-CNN Resnet 101” was used to recognize traffic signs within the CARLA 
simulator. Detected tampered signs were submitted to the backend according to the SIEP protocol. 

 

Figure 98: Simulated tampered sign attack within the CARLA environment. 

5.1.5 Attack Detection & Generation – GPS spoofing 

Demo vehicles equipped with onboard GPS spoofing attack detection capabilities submit the threats 
they detect to the backend. There, the information is processed and overlapping areas are stitched 
together into aggregated threat zones. The threats are then rated in terms of detection confidence, 
based on the frequency of observations from the vehicles. If a significant percentage of vehicles 
crossing through a suspected spoofing area detect and submit the threat, then the backend assigns a 
high confidence level to it. Similarly, if only a small fraction of vehicles detects it, then the threat is treated 
with low confidence. Only medium and high confidence threats are pushed to vehicles subscribed to 
the backend. On the threat awareness dashboard, a color scale is used to visualize the different threat 
levels. 

 

Figure 99: Various detection confidence levels of a GPS-spoofing attack in the CARAMEL dashboard. Low 
confidence in yellow, medium confidence in orange, high confidence in red. 

5.1.6 Small displacement spoofing (SDS) awareness dashboard 
Proof of Concept 

Vehicles can determine their location in several ways. GPS is the most common localization technology, 
but more sophisticated methods, such as combining information from high-definition maps with object 
detection techniques, offer more accurate ways of localization. By comparing and combining information 
from different location sources, vehicles can reliably determine their position on the road. GPS signals 
can be spoofed. Vehicles can detect large anomalies in their GPS position by fusing location data from 
various sources, such as nearby Wi-Fi and cell tower signals. This is not the case for small 
displacements, which fall within the range of typical GPS accuracy of around 5 meters. At this point, 
vehicles cannot distinguish whether these deviations occur due to sensor malfunction, physical 
obstacles, or a malicious attacker. Under the assumption that under normal circumstances the 
difference between the GPS position and other location sources is random and that under attack the 
deviations of each spoofed vehicle follow a common direction pattern as shown in Figure 100. Capgemini 
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Engineering created an interactive visual dashboard as a proof of concept to demonstrate the 
collaborative method in which the team envisions the collection and visualization of SDS attacks. In 
Figure 101 the blue area demonstrates the scanner function that iterates through the map area for similar 
deviations. Work on this concept will possibly continue as part of the GAIA-X 4KI project. 

 

Figure 100: Vehicle location deviations under different scenarios. 

 

Figure 101: SDS Proof of Concept dashboard. The red area color intensity indicates the detection confidence 
level. 

 

5.2 Attack Vectors 

In the scope of this work, the following two attack scenarios are considered:  

5.2.1 Sign Tampering  

Autonomous vehicles rely on traffic sign information collected through onboard cameras to make safety-
critical decisions. Tampered traffic signs, regardless of malicious intent or not, can trick the vehicle into 
taking wrong and dangerous driving decisions, for instance, assuming a false speed limit. 

5.2.2 GPS Spoofing 

GPS technology is now a mature technology and the standard way for vehicles to efficiently navigate 
between locations. Still, GPS devices can be vulnerable to cyber-attacks through GPS spoofing. 
Spoofing happens when a malicious actor uses a radio transmitter to emit a counterfeit GPS signal to a 
receiver antenna, such as the one within a vehicle, to counter and overpower a legitimate GPS satellite 
signal. Most GPS-based navigation systems are designed to use the strongest available GPS signal, 
and so they are vulnerable to spoofing attacks. The attack can be subtle enough for the driver or vehicle 
to not realize and it could lead them to steer off course without any coercion.  

Recently, autonomous driving technologies have created the necessity for more accurate and reliable 
ways of localization. For example, high-definition maps together with object detection techniques can 
help vehicles position themselves on the street more accurately. These methods usually have multiple 
input sources and so they are more robust against attacks as is demonstrated by other partners. 
Nevertheless, it is expected that these technologies will complement and not replace traditional pure-
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GPS localization, due to the additional computational effort and availability of data. Here, we assume 
that vehicles transmit two location streams. 

5.3 Demonstrated Use Cases 

The added value of the Capgemini Engineering backend solution will be demonstrated through the 
following two use-cases.  

5.3.1 Attack awareness – Sign tampering and GPS spoofing 

We will demonstrate how smart vehicles with threat detection capabilities can notify the backend about 
attacks they have witnessed in route. After processing, the backend can then push threat alert 
notifications to subscribed legacy vehicles that are less equipped to detect threats. We show how these 
vehicles can be informed in advance about attacks in their vicinity. Both road sign tampering and GPS 
spoofing attacks will be used to demonstrate. 

5.3.2 Attack detection through collective intelligence – GPS 
spoofing 

Here, the ability of a monitoring backend solution to process both hyperlocal and larger surface area 
threats from multiple sources will be demonstrated. A simulated GPS Spoofing attack will be used to 
demonstrate.  

Smart vehicles with onboard GPS spoofing attack detection capabilities submit location data 
abnormalities that they detect to the backend. The backend aggregates the data into distinct danger 
zones and assigns a danger level based on the consensus of the observations. The more ground truth 
vehicle data is available, the more confident the prediction. In practice, if the majority (or other suitable 
statistics/thresholds) of smart vehicles detect a GPS spoofing attack, then the corresponding area is 
marked as dangerous and other incoming legacy vehicles are informed of the threat. 

5.4 Software Pipeline 

The process pipeline and the software building blocks are similar for both use-cases. Vehicles driving 
in a simulated environment, the CARLA Simulator, submit their data to the backend through a Python-
based communication API. Traffic signals are detected using image recognition techniques such as 
“faster RCNN (resnet 101)” implemented in TensorFlow. For the GPS spoofing use case, only the 
locations of the vehicles are submitted to the backend. This use case will be discussed in more detail 
in the following section. The Python-based backend verifies and processes the submitted messages 
before forwarding them to the custom-built CARAMEL dashboard. Identified threats along the trajectory 
are published to an MQTT communication broker from where legacy vehicles can retrieve and display 
them on an in-vehicle HUD. The scenarios can be run both in a simulated and a real-world setting. 
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Figure 102: Communication architecture with a Security Message Protocol (SMP). 

 

5.5 Demonstrator storyboard 

To demonstrate the use cases, three simulated vehicles are employed. We showcase the following 
capabilities: 

• Threat collection. 

• Threat analysis, aggregation, and severity ranking. 

• Threat alert notifications. 

• Threat awareness and visualization dashboard. 

• Road sign detection. 

• Communication and data exchange between the tools. 

The following storyboard outlines the series of events that we have orchestrated to highlight the full 
value of our work: 

5.5.1 Scene 1 – Smart Vehicle 1 

Smart Vehicle 1 is assumed to be equipped with an advanced sensor package and map matching 
technology, that allows it to generate an untamperable location data stream (at least in environments 
with suitable landmarks) and hence detect GPS spoofing attacks. The vehicle is also connected to our 
backend service. 

While driving downtown on the highway of a simulated city, the vehicle enters an area, where its GPS 
signal does not match its untamperable location. The vehicle notifies the backend of this discrepancy. 
The area is flagged as suspicious. The backend does not assign a high-risk level to the threat because 
it lacks enough data points. The data needs to be cross-validated with other smart vehicles first, which 
is where the backend-powered statistical intelligence shines. Besides, the observation could have 
potentially been a sensor miscalibration or signal interference with the surrounding buildings.  

Further ahead, a traffic sign has been sprayed with paint to trick the vehicle’s autonomous driving 
system. The vehicle detects the threat, as it is equipped with onboard tampered sign detection 
technology. The threat is sent to the backend, where it gets stored in the database. As this kind of threat 
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can be reliably detected from a single vehicle, the backend immediately assigns a high-risk level to the 
threat.  

A few meters ahead an attacker has placed a transmitter device nearby, distorting GPS signals. The 
vehicle enters the area and again detects the discrepancy. The data is sent to the backend and again 
the area is flagged as suspicious. The threat database is starting to build up. At the same time, all 
threats are displayed on the threat awareness dashboard. 

5.5.2 Scene 2 – Smart Vehicle 2 

A few minutes later Smart Vehicle 2 enters the same street. Like Smart Vehicle 1, it too is equipped 
with an advanced sensor package, and it is also connected to the backend.  

The vehicle enters the first suspected spoofed area but does not detect any discrepancies, indicating 
no spoofing activity. Since there is no consensus between this and the previous vehicle, the backend 
does not elevate the risk level of this threat. 

The vehicle moves on and enters the second suspected spoofed area. Here, the discrepancy is 
detected. The backend processes the data from both vehicles, readjusts the suspicious attack zone and 
elevates the threat level to high risk. In a realistic, large-scale scenario, it is expected that significantly 
more vehicle observations will be required to update the risk profile of a threat.  

5.5.3 Scene 3 – Legacy Vehicle 

A third, legacy vehicle enters the street. It lacks advanced onboard sensors and is vulnerable to GPS 
spoofing and sign tampering attacks. The driver has subscribed to a cybersecurity service powered by 
the backend for extra protection. 

As the vehicle drives through the first suspected GPS spoofed area the backend does not notify the 
vehicle, because the confidence level is low. As it approaches the tampered sign though, the backend 
pushes a threat alert. Later, as the vehicle approaches the second GPS spoofed area the backend 
again sends an alert in advance. Both vehicle and driver are now aware of the dangers and can exercise 
caution. 
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6 Roadmap for future evolution of the CARAMEL 

achievements 

6.1 Introduction. 

Self-driving and connected vehicles are rapidly evolving and will eventually become the main mode of 
transportation for people and cargo. While from a mechanical point of view little has changed compared 
to traditional cars, software is at the core of this rapid transformation. These new capabilities allow for 
use cases, products and applications that were unviable a few years ago, but also surface problems 
that require careful research and design. Vehicles, whether autonomous or not, remain a safety-critical 
application that must guarantee the safety of their passengers. The increasing integration of software 
and the connectivity of vehicles with their environment creates attack surfaces that were previously 
unknown and must be carefully studied. It was CARAMEL's goal to address some of those challenges, 
provide advanced methods to mitigate them and to explore further problems that are still to be solved. 
In the following we will present how the roadmap of CARAMEL’s pillar achievements could look. 

In particular, the element of (edge-)cloud is of increasing interest in the pan-European cybersecurity 
ecosystem because it is the glue between stakeholders, machines, users as well as the cybersecurity 
risks that spill over between previously disjoint use-case playing grounds of (cyber)attacks, some of 
which previously not categorized as such (e.g., Pillar 1). It is also apparent that the local-minded, once-
and-for all type approval process of to-be-sold devices and vehicles is insufficient. The UNECE 155, for 
example, advises a Cyber Security Management system to all stakeholders for good reason. So far, the 
law is not implemented.  

Some of the solutions presented in CARAMEL are backend oriented, so it could be considered as a 
“Seeing is believing” style, since the implementation of cross-stakeholder, “online” messaging about 
threat awareness is hampered by 

• political issues within and between the industrial players, 

• fragmentation of the public players, 

• unclear business case. 

The more the path to collaborative threat awareness is laid out the more we hope to expect actual 
implementation across the cloud and subsequently also for companies like Capgemini and Atos (two 
partners from CARAMEL’s Consortium) who mostly perform like integrators between the sectors, partly 
via the cloud. 

6.2 CARAMEL’s modularity approach. 

 

Pillar 1 - Autonomous Mobility (AVL/UPAT/UCY/0INF/PANA/CAPGEMINI). 

Over the last few years there has been a great interest in developing autonomous vehicles aiming to 
reduce disastrous accidents and offer improved time management during traveling. However, such 
systems also impose strong safety and security requirements and therefore a second safety-ensuring 
sub-module is essential besides the main driving components. In this project, we focused on designing 
and developing techniques to detect and diagnose anomalies in the environment focusing on traffic 
signs aiming to reduce the possible implications and consequences of such malicious actions. In the 
near future an extension of the system for possible environmental attacks or alterations on road lanes, 
parking lines and traffic lights is considered, by extending the current anomaly detection algorithms. 
Similar to that, anomaly detection models can be extended to handle vehicle behavior patterns utilizing 
also the system logs to provide further security guarantee to autonomous driving systems. This 
extension is aimed mainly to improve the current functionality including more environmental attacks or 
unexpected and unwanted alterations that may endanger the passengers or pedestrians and other 
vehicles. As a result, it will help to build a more complete system with improved functionality. 



CARAMEL (No. 833611)                                           D6.3                                               June 2022 
 

 

Page 110 of 117 

 

 

 

Figure 103: Road Lane line detection for environmental attacks or alterations. 

 

Furthermore, another evolution of the CARAMEL system that is currently only for environmental attacks 
detection and recognition is to be modified and used for road and environment monitoring such as road 
damage detection for maintenance e.g., holes. Road infrastructure is an essential piece of modern 
society and is one of the most important public assets. This additional functionality will help cities, 
countries and transportation departments struggling with budget and labor limitations. These challenges 
affect everyone, as bad road conditions cause public safety problems and cost drivers who repair 
pothole damage to their vehicles. Computer vision and deep learning models will be designed and 
trained to interpret image data from vehicle cameras. The models for the detection and classification of 
pavement and road deterioration will be finally deployed and tested with the aim of calculating an index 
or metric. This metric will quantitatively evaluate the condition of the pavement for each section of the 
road. 

 

Figure 104: Example of road quality analysis. 

 

Finally, the roadmap of these tools and components is to be integrated into a single benchmarking 
system. Utilizing the CARLA car simulation - that allows dynamic and controlled environmental 
alterations - traffic signs and roads will be generated including normal and attacked or altered objects. 
This benchmarking system will allow the fair comparison of AI models in terms of performance, accuracy 
but mainly their robustness against environmental attacks. As a result, this integrated system could be 
also utilized as a cybersecurity certification process for smart and autonomous vehicles. 

On another note, almost all large European car manufacturers and suppliers are customers of DT-Sec 
or Deutsche Telekom. DT-Sec has identified automotive security as a growth area, given that more and 
more domains in the automotive sector are governed by IT – may it be the connected car itself, the 
roadside infrastructure, or the backend systems. This increasing reliance on data communication and 
processing inside the car, the edge, and the cloud dramatically widens the attack surface and therefore 
the market for security solutions. Given this background, DT-Sec focuses on delivering tailor-made 
secure IT solutions to the connected vehicle such as the anti-hacking device or the embedded secure 
element (or HSM, hardware security module. 



CARAMEL (No. 833611)                                           D6.3                                               June 2022 
 

 

Page 111 of 117 

 

 

DT-Sec runs the Deutsche Telekom trust center for the whole Deutsche Telekom group and many 
external customers. Additionally, DT-Sec has its own product line of smart card and secure module 
products based on the Telekom Card Operating System (TCOS) that is used for the German identity 
and healthcare cards, for example. DT-Sec has the engineering and software development ability to 
integrate this HSM solution into a range of embedded devices – the anti-hacking devices of the 
CARAMEL project – and to help partners deploy this technology into their respective security scenarios 
and showcases developed for the project. DT-Sec is also running the Deutsche Telekom CERT 
(Computer Emergency Response Team) for the whole Telekom group which is also networked to the 
ENISA CSIRT network. 

Results and experiences of the CARAMEL project will influence the roadmap of the DT-Sec product 
portfolio development for years on end and will drive the development of innovative product offerings 
for the automotive security market. Specifically, DT-Sec will re-use the methodology of integration of 
hardware security elements into in-car control units as showcased in the anti-hacking device. 
Leveraging its membership in the 5GAA (5G Automotive Association), specifically the working group 7 
on security and the work in the misbehavior detection work item to integrate results from CARAMEL 
into forthcoming 5GAA documents. Additionally, DT-Sec will steer the direction of development of the 
TCOS platforms to enable more compatibility with automotive standards, eg. by supporting elliptic curve 
cryptography to enable secure handshakes with automotive control units and on-board units such as 
showcased in the project. The multi-layered approach to security taken in the anti-hacking device will 
be adapted as a blueprint for the development of future hardware solutions for the automotive product 
portfolio and forthcoming customer projects. 

The Architecture & Innovation department inside DT-Sec carrying out the work is committed to constant 
dissemination of work results to the whole Deutsche Telekom Group in Germany and internationally. 
Members of the CARAMEL project team also take part in the internal product portfolio process and meet 
with members of the board on a weekly basis. Therefore, transmission of project results into the portfolio 
and the product roadmap is guaranteed. Project results will be preserved and made available to all of 
Deutsche Telekom group employees by using the widely accepted internal knowledge management 
platform “YAM United” where they are prominently displayed and easily be found by the advanced 
search functions of this platform. 

Capgemini, partner with collaboration within Pillar 1 and 2, is considered an established contractual 
supplier of experts and solutions for Telecoms and has experts conducting worldwide projects with 
several major automotive manufacturers and telecom operators. This expertise in conjunction with 
acquired knowledge from CARAMEL’s core topics enables CAPGEMINI's portfolio diversification in 
areas like 5G technology, cybersecurity, artificial intelligence, machine learning, embedded software, 
among others. The gained experience allows proliferation of innovative technologies or consulting 
services in the most relevant fields of development such as autonomous driving simulations, digital 
twins, cybersecurity, risk mitigation, among others.  

Within the activities of pillar 1, UCY has developed a deep learning approach referred to as Drive Guard, 
which aims to provide a solution towards detecting and mitigating cyberattacks on the camera sensors 
of autonomous vehicles. This approach has proven promising in robustifying perception tasks in 
autonomous vehicles. Building on this work the UCY team will further investigate the spatio-temporal 
aspects of the proposed solution by expanding it with the use of vision transformer models which can 
capture longer range dependencies and thus would be more useful in extracting patterns from video. 
Furthermore, we will also explore multi-modal approaches to train machine learning models to have a 
holistic situational awareness and be able to deal with uncertainties of various sensors and exploit their 
complementarity. Finally, an additional mechanism to develop regards quantifying the uncertainty of the 
perception models as well through probabilistic Monte Carlo techniques in order to have a second line 
of defense in case the primary solution fails with detecting and mitigating the cyberattack.  A horizontal 
challenge across all these research directions is the strict run-time requirement. As such, we will provide 
further improvements on currently developed models and techniques that will be simultaneously robust 
but also lightweight and fast.  

Throughout CARAMEL’s development and experimentation phase, it was verified that the cyber-attack 
detection and mitigation engine, developed during the project, can provide immunization of the system 
at a level of high caliber. The consortium’s solution in pillar 1 was mainly geared towards sensor-oriented 
approaches for mitigating the attack. While this has proven to be efficient in terms of the provided 
accuracy, the computational resources needed to be allocated for this type of mitigation strategy is quite 



CARAMEL (No. 833611)                                           D6.3                                               June 2022 
 

 

Page 112 of 117 

 

 

high. According to the gained experience, as a further step for robustifying cyberattack mitigation 
efficiency, the community should provide solutions, where data exchanged by neighboring traffic agents 
are being used to mitigate the attack. In this way scene understanding measurements contributed by 
the neighboring traffic agents can be used as priors in the process of reversing the attack. Thus, 
embodying IEEE 802.11p in the cyberattack evaluation and mitigation phase. 

Due to the very strong demand for safety solutions by the equipment manufacturers, we expect a 
significant increase in the business in this area. Innovative solutions and competence demonstrations 
are added on top. Since we are product-neutral, we expect the proliferation of CARAMEL technologies 
and thus further indirect business. 

 

Pillar 2 - Connected Mobility (i2CAT/ATOS/UBIWHERE/NEXTIUM by Idneo/UPAT/CAPGEMINI). 

Pillar 2 presents solutions for three hot topics about the basis on which Intelligent Transportation 
Systems (ITS) relay. These are the implementation of ITS security models defined by the ETSI, the co-
existence of different radio technologies to interchange V2X messages and the veracity of the positions 
that vehicles are announcing. 

i2CAT, by developing the components of which it is responsible for, has set the roadmap of its 
participation in future V2X projects and services. The main component that i2CAT has developed is the 
ETSI ITS protocol stack containing different V2X messages, BTP and GeoNetworking protocols, its 
interface with a PKI architecture to manage ATs and the integration with different kinds of HSM. In the 
market, there are two main consumers of such a protocol stack, the car manufacturers that deploy OBUs 
containing the protocol stack in their vehicles, and road infrastructure operators that require the stack 
to be executed in servers to provide ITS services to drivers and administrations. In CARAMEL we have 
used the same version of the stack for both segments, in the NEXTIUM by Idneo's OBU, and in the 
MEC. As the deployment of the whole stack departing from zero is a huge task, we have relayed in the 
open-source Vanetza framework, modified and upgraded conveniently to be adapted to the specificities 
of CARAMEL's use cases. We have seen that commercial versions of this stack provided by 
Commsignia, Cohda Wireless or Lacroix are much more efficient in the OBU side since their stack has 
been programmed very specifically for automotive computers, which have small memory and small 
computation capabilities. Therefore, i2CAT's stack cannot compete in this segment. Nevertheless, these 
commercial stacks are closed and focused to high level functionalities, the programmer can not access 
to specific functions or change the parameters of the protocols, they are not flexible, and they are hard 
to be adapted to different scenarios. On the other hand, these are, precisely, the characteristics of the 
ITS protocol stack developed in CARAMEL which adapts very well when used in a MEC or other servers 
in the infrastructure. We have all the code, and we can adapt it to any particular situation and 
requirement. For instance, it can be used to build digital twins, traffic management centers, to develop 
any kind of ITS application. Moreover, it can be used in other types of environments, for instance to 
build small size OBUs, using Raspberry Pi platform, for bicycles or electric scooters. Our roadmap is to 
continue developing this piece of software and use it in several upcoming projects as EU project Podium 
starting next October, or in contracts that we are discussing with Idiada or Abertis Autopistas España. 

The second module that i2CAT has developed is the system architecture that contains a MEC, 
connected to fixed infrastructure of different types of radio technologies, with the necessary software 
components to allow vehicles, using these different types of radio technologies, to communicate among 
themselves. In CARAMEL we have demonstrated the case of interoperability between the V2X native 
standard IEEE 802.11p and LTE that provides non-native V2X communication, having to use V2X 
messages over IP. These components are valuable for i2CAT's upcoming projects because radio 
technologies will continue evolving, and we need to adapt our systems to this evolution. i2CAT's 
immediate roadmap contains the plan to implement interoperability with a new radio infrastructure based 
in LTE-PC5 and, when available, also based in NR-V2X and 802.11bd. Additionally, the fact of having 
developed the necessary components to transmit messages over IP over LTE, allows it to switch from 
LTE to 5G with very little effort. 

Another challenge of cybersecurity in V2V connected mobility is location spoofing. The latter attack aims 
to compromise the self-positioning ability of vehicles. A location spoofing attack attempts to fool a GNSS 
receiver by broadcasting false satellite signals, focused on resembling a set of normal satellite signals. 
These spoofed signals may be modified in such a way to cause the receiver to estimate its location 
even kms away from its actual position. The impact of this attack is more devastating if we consider a 
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group of connected vehicles, which exchange their location measurements in order to coordinate their 
actions. Broadcasting falsified GNSS positions, then severe traffic accidents are more likely to take 
place, injuring drivers, pedestrians, cars, etc. UPAT has developed the associated algorithmic mitigation 
and detection solution. The main task of this collaborative defense mechanism is to run dedicated 
cooperative AI solutions that work on the data transmitted to the leader ego vehicle. It is responsible to 
receive the measurements of the cluster's vehicles, identify and mitigate the possible attacks on the 
GNSS receivers and feed the re-estimated positions back to the involved vehicles. UPAT’s module has 
been deployed within the CARLA-ROS simulated framework, using CARLA simulator to generate data 
from cars’ sensors and ROS nodes as the data consumers. Within this approach, it is of future plan to 
evolve the interoperability of the defense mechanism, by integrating a realistic V2V communication 
simulator which models network delay. In addition, it will be explored how the current centralized 
implementation will be transformed to a distributed based solution, without the need of a central node, 
which enables scalability, lower computational and deployment cost, as well as mitigation and detection 
ability. 

UCY developed the in-vehicle location spoofing attack detection solution. It uses a threshold-based 
approach (i.e., static threshold value that is selected during the training phase) for detecting suspicious 
deviations between the current GPS location and the GPS-free vehicle location estimate that relies on 
vehicle measurements and absolute vehicle location (e.g., through cellular network localization 
solutions). In the immediate future, the UCY team will explore Machine Learning techniques to obtain a 
dynamic threshold that is adapted to changing conditions. For instance, as the vehicle moves from a 
rural to a suburban to an urban environment the GPS location accuracy and precision degrades 
(because of increasingly obstructed satellites), while the accuracy of cellular-based methods that are 
used to estimate the GPS-free vehicle location is better due to increasing cell tower density. This 
dynamic threshold selection approach is expected to robustify the UCY attack detection solution, i.e., 
reduce false positives due to variable environmental conditions. Another research direction will be 
towards enhancing the solution not only to detect the location spoofing attack, but also to mitigate the 
attack by reconstructing the attacked GPS locations. To this end, denoising autoencoder techniques 
will be investigated to remove any bias introduced in the GPS locations as the result of an attack. 

From NEXTIUM by Idneo side, as a solutions partner who developed SW & HW securitization methods 
to protect the HW (OBU) against tampering and attacks, an evolution for the hardware protection could 
be the usage of Physical Unclonable Functions (PUF) for the securisation. A PUF is a physical object 
that for a given input and conditions provides a physically defined “digital fingerprint” output. In 
semiconductors, due to the submicron manufacturing process variations, every transistor from the 
integrated circuit has slightly different physical properties that can be measured (transistor threshold 
voltages, gain factor, parasitic capacitances…). These variations are not controllable in the 
manufacturing process and using these inherent variations as inputs for certain algorithms, the silicon 
fingerprint is turned into a cryptographic key that is unique for that individual chip and is used as its root 
key. 

The same principle can be used for protection against tamper attacks for the electronics of the OBU 
without using a battery. For example, if we were able to measure the capacitance between traces in the 
wire-mesh used for protection, these capacitances will be unique in each device due to the 
manufacturing process and could be used to extract a cryptographic key. If the device is modified in any 
way, even if the wire-mesh is bypassed, the inherent capacitances will be different, obtaining a different 
cryptographic key and then detecting a tamper attack.  

From software level, we could suggest extending the chain of trust to rootfs for future products related. 

Pillar 3 - Electromobility (GFX/SID/CLS/TSYS). 

Within Pillar 3, CARAMEL developed cyber threat detection techniques for plug-in Electrical Vehicles 
(EVs). The focus was on detecting irregularities in the communications to and from the charging 
infrastructure. The smart charging infrastructure cybersecurity analysis carried out by CARAMEL 
indicated several potential attack vectors due to its complex nature and the interactions between the 
entities involved creating a communication scheme susceptible to a number of security threats on 
different levels. Some examples of the communications occurring at a smart charging architecture 
include the metering and payment for energy, communication interruptions between the EV battery 
management system and the charge point that is followed by a communication mechanism between 
the CP and a central management system, and finally the establishment of a communication channel 
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between the CS and the energy suppliers (Distribution System Operators (DSO), Transmission System 
Operators (TSO), smart grids, etc.). 

 Smart Charging attacks can have a direct or indirect impact on every component of the energy 
ecosystem (charging infrastructure, TSO, DSO, etc.). The reliability and security of the whole energy 
supply network can be jeopardized due to the lack of security mechanisms in the charging stations for 
identifying and preventing potential attacks and threats. For example, a potential attack vector in the 
smart charging infrastructure could affect the DSO and as a result a partial energy blackout could take 
place. As Charging Point Operators (CPOs) and e-Mobility Service Providers (eMSP) struggle to 
integrate Artificial Intelligence (AI) approaches to modernize their services, the interconnection with 
different actors using different technologies opens doors to threats and vulnerabilities. 

 Within CARAMEL, a Machine Learning (ML) pipeline has been developed, deployed, and tested on a 
real dataset of a standard EV charging enterprise identifying abnormal activity in the charging process. 
The security concerns that have been raised by this pipeline can alert software developers, security 
administrators, and electrical engineers for potential threats to the smart charging infrastructure. An 
aspect that should be explored in the future is the interconnection between different actors in real-time 
informing for breaches, known vulnerabilities and zero-day attacks. An extension of this exchange of 
information is the creation of a common repository that stores, updates, and ranks known threats and 
attacks. Another extension of the proposed ML pipeline could be the exploitation of the Open Charge 
Point Protocol (OCPP) packets creating a library of signature-based attacks inside the private Azure 
vNET that the GFX socket server resides capable of blocking any malicious packets. Moreover, through 
the analysis of the OCPP packets, additional headers could be used providing a more detailed overview 
of the incoming transactions. 

 

. 
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7 Conclusions 

Next, we summarize the key findings and takeaways obtained from all the tests and developments done 
in the context of Pillar 1, 2, and 3 of the CARAMEL’s project: 

• The detection and mitigation of the cyber-attacks were quite efficient in restoring the attack in 
numerous Autonomous Driving Functions including fully automated Parking. 

• The range of operation of the remote control needs to be extended. 

• Regarding the in-vehicle location spoofing attack detection solution, it is important to understand 
and consider the anti-spoofing mechanisms already present in commercial GNSS receivers that 
are integrated into autonomous vehicles (e.g., timestamp checks to detect time synchronization 
attacks). The proposed solution should be enhanced to go beyond the existing mechanisms for 
detecting and importantly mitigating (see the in-vehicle location spoofing solution roadmap) 
fine-grain attacks that introduce small bias in the GPS locations to avoid detection. 

• With regards to cyber-attacks on camera sensors it is important to understand the extent at 
which such attacks can be recovered from a single sensor and when additional sensors need 
to be considered. With regards to the embedded platforms used there still needs more work on 
supporting multiple deep learning models and facilitating their parallel execution in real-time. 

• Regarding the anti-hacking device for the environmental attacks, different devices were 
considered and tested. The Jetson Nano AGX (anti-hacking device) performed at the best frame 
rate allowing real time processing during the integration. Of course, it consumed considerably 
more voltage but this can be mitigated by using the built-in ethernet and connecting via a wired 
local area network.  

• Both real and synthetic datasets were used for the deep learning models during the training and 
validation. Performing transfer learning and fine-tuning significant benefits in terms of 
performance can be achieved using both modalities. The real data overcomes the lack of 
realism in the synthetic, and the synthetic ones offer more balanced/unbiased datasets 
including scenarios that are not common in real life under a controlled and safe environment.    

• The overall performance of the traffic sign anomaly detection system can be improved 
significantly by introducing a reconstruction component. This deep network aims to improve the 
quality of the attacked traffic sign before the recognition and classification offering significant 
increase in accuracy and precision both for real and synthetic datasets.  

• One of the main objectives achieved in pillar 2, it has been to develop a functional, flexible and 
easy to extend ETSI ITS protocol stack. We departed from the Vanetza open-source framework, 
and we modularized it in order to be able to commercially exploit it. We also contributed to the 
open community providing the new version of the ETSI security that was not implemented in 
the original framework. This protocol stack has been successfully tested in different platforms: 
i) standalone computers, ii) Single Board Computers that act as RSUs or OBUs, iii) in virtual 
containers as part of a MEC architecture, and iv) embedded in an automotive grade OBU. While 
in the three first cases, the deployment was easy, in the fourth case (the automotive grade 
OBU) the task has been very arduous and much time consuming. The reasons for this situation 
were that the Vanetza framework uses many C++ libraries and dependencies, and was not 
designed for optimizing memory space and, on the other side, the automotive grade OBU was 
designed to be economically competitive, and its memory and CPU capabilities were too low. 
Therefore, we had to prune many of the Vanetza superfluous dependencies and deploy some 
functionalities in the anti-hacking device. In a future version, we recommend not to use a low 
capabilities OBU plus an additional device, but to design a more powerful OBU and optimize 
the protocol stack. 

• Related with the previous point, pillar 2 achieved the objective of a complete integration of the 
ETSI ITS protocol stack with the management of the required Authorization Tickets (AT) 
provided by a PKI architecture. The main goals have been: i) the management of ATs inside 
the OBU's HSM, to produce public/private key pairs and signature of messages, ii) the 
attachment of digital signatures plus digital certificates in the V2X messages, and iii) the 
selection of the time when the AT must be changed. Emphasizing this third point, one of the 
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known flaws of CAM messages broadcasting is a thread in the vehicle’s privacy. Meaning that 
any eavesdropper can follow the trajectory of a vehicle. To try to mitigate this situation, the ETSI 
proposes to change the used AT and vehicle's identifiers from time to time. Pillar 2 has 
investigated this aspect and reached the conclusion that, even without analyzing the used AT, 
the fact of transmitting the vehicle's position in periods of 100ms, is enough to be able to track 
a vehicle. Therefore, there is no point of changing the AT. Nevertheless, the computational 
power to perform this operation is a critical aspect to consider. In consequence, pillar 2 
proposed an algorithm to change the vehicle's AT considering when the vehicle has more 
chances to be "lost" among other vehicles. 

• Another objective achieved in pillar 2, it has been bringing out the problematic of having different 
ITS radio technologies and developing a solution to solve it. Currently, we are in a phase that 
there is a mature and wide available technology (IEEE 802.11p), an already consolidated 
technology but not available as commercially Network Interface Cards (NIC) to be connected 
to any computer (LTE-PC5), and a new technology, not yet commercially available (NR-V2X). 
A part of these native V2X radio technologies, it is also possible to transmit ITS messages over 
IP over a public cellular network. Therefore, in the first stages of ITS services deployment, we 
need a solution as the one provided in pillar 2, that sets up fixed radio infrastructure of all 
required technologies, and using a forwarding software, this time executed in a MEC 
architecture, forwards messages to all involved vehicles. In CARAMEL, we successfully 
deployed an 802.11p RSUs network, with the protocol stack controlling them virtualized in a 
Kubernetes MEC. Additionally, we also set up a complete LTE network with the Open5GS open-
source EPC and Accelleran small cells. With this configuration, the forwarding module is able 
to solve the interoperability problem and, in a near future, it can be extended to consider LTE-
PC5 and NR-V2X technologies. The main problems that we faced building this architecture 
have been, firstly, the complexity of IP network addressing with Virtual Local Area Networks 
(VLANs), successive Network Address Translators (NATs) managed with different iptables 
routes and, secondly, the deployment of the Open5GS with the Accelerant’s dRAX and small 
cells, that presented numerous instability problems. 

• A further achievement of pillar 2, it has been the development of an architecture to deliver 
alarms detected in the vehicle (tampering alarm, GPS spoofing attack, etc.) to servers in the 
edge or in the cloud that can trigger mitigation actions or simply, monitoring the heartbeat of the 
whole system. 

• Related to the HW, the release G2 of i.MX8 processor used was not able to detect the HW 
tamper attack when the device is powered off. The release G3 has implemented tamper 
monitoring in low power mode, that means powered by battery, which is able to detect tamper 
attacks when the device is powered off. 

• The overall performance of the anomaly detection system that has been developed within Pillar 
3 of the CARAMEL project with the aim to improve the resilience of the EV charging stations 
against smart charging abuse and EV scheduling abuse attacks can be enhanced through 
dimensionality reduction. Applying techniques such as Pearson correlation and Random Forest 
can significantly reduce the complexity of the incorporated ML models and avoid overfitting, 
improving all four-evaluation metrics (namely accuracy, precision, recall and F measure) of the 
devised anomaly detection system. 
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