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Executive Summary 

This document describes the work performed in task T4.3 towards understanding the autonomous 

vehicle’s state at any time; thus, providing holistic situational awareness in the case of cyber-attacks on 

the vehicle’s camera or GPS sensors. This is achieved through enhanced sensor fusion both at the 

sensor data level, as well as at the solutions’ level, i.e., through the combination of standalone solutions 

to deliver higher robustness to measurement noise and increase the attack detection confidence. 

First, the details of sensor fusion solutions are presented for detecting camera attacks, which are 

different from the solutions described in previous deliverables and may in fact complement those 

solutions developed in the context of T4.2/D4.2. Second, the details of diverse and highly 

complementary sensor fusion solutions are provided for detecting GPS location spoofing attacks. Third, 

detailed methodologies are presented for combining the respective camera-related and GPS-related 

attack detection solutions into powerful hybrid schemes to build advanced defensive mechanisms 

against camera attacks and GPS location spoofing attacks, respectively. 
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1 Introduction 

Understanding the autonomous vehicle’s state at any time is critical to identifying potential threats, 
reliably detecting on-going attacks, and applying proper mitigation actions to recover. The extensive 
literature on sensor fusion provides a wide variety of powerful tools and techniques for combining 
heterogeneous multi-source sensory data, which are readily available inside the sensor-rich 
autonomous vehicles or can be easily collected by leveraging Vehicle-to-Infrastructure / Vehicle-to-
Vehicle (V2I/V2V) communication capabilities to enable cyber-attack detection. These data can be 
combined in an optimal way, where optimality may refer to increased robustness against measurement 
noise, higher detection accuracy, lower response time or any other performance criterion.   

In task T4.3, different fusion-based solutions are developed to defend against cyber-attacks that target 
either the vision sub-system (and in particular the camera) or the location awareness sub-system (i.e., 
the GPS location) of the autonomous vehicle. In particular, one of the developed solutions, mitigates 
camera cyber-attacks by using the Light Detection and Ranging (LiDAR) sensor as an independent 
module that processes only raw 3D point clouds to assist the vehicle’s perception engine, that typically 
uses data only from the camera, in delivering correct scene understanding. Another solution, fuses 
camera and GPS, which are commonly used in perception engines in autonomous vehicles. The fusion 
of such data can provide insights about cyber-attack incidents, as well as enable the robustification of 
an existing attack detection pipeline. 

Regarding the detection of GPS spoofing attacks, one of the developed solution leverages in-vehicle 
multisensory data (e.g., accelerometer, gyroscope, compass, etc.) to compute a parallel GPS-free 
stream of estimated vehicle’s locations using a fall-back localisation method based on Bayesian filtering. 
This enables the detection of potential location spoofing attacks by comparing the estimated vehicle 
position with the GPS location reading. The other solution is essentially a collaborative GPS spoofing 
defence mechanism that relies on multi-modal sensor fusion among the vehicles of a Vehicular Ad-hoc 
NETwork (VANET), while the measurements include the relative distances, the relative angles, and the 
relative azimuth angles among the vehicles, as well as the absolute position measurements (i.e., GPS 
positions) of all vehicles. 

Going beyond the information fusion at the sensor level, it is possible to provide improved situational 
awareness for achieving higher attack detection accuracy and reliability by correlating the outputs of 
complementary detection modules. To this end, a framework is developed that combines the 
DriveGuard Convolutional Autoencoder developed in D3.2 with the traffic sign attack detection pipeline 
developed in D4.2 for detecting both internal and external attacks. Furthermore, a second framework is 
developed to achieve enhanced GPS location spoofing attack detection by combining the 
aforementioned spoofing detection solutions, i.e., the in-vehicle and the collaborative solutions. 

1.1 Purpose of this Document 

This document presents the details of fusion-based solutions for detecting attacks on camera and GPS 
sensors. Fusion may take place at the sensor measurements level, i.e., by combining heterogenous 
sensor data. To this end, two sensor fusion solutions for detecting camera attacks are described, 
namely one that leverages data from the LiDAR sensor to validate the observations of the camera 
sensor and another one that utilizes GPS data to assist the detection of camera attacks. These solutions 
are validated experimentally using realistic data obtained through the CARLA simulator. Notably, both 
solutions may complement the solutions developed in the context of T4.2/D4.2 to defend against this 
type of attacks. In addition, the methodology to combine the camera attack detection solutions 
developed in T4.3 is also presented and validated. 

Along the line of fusing diverse multi-source sensory data, this document also describes two sensor 
fusion solutions for detecting GPS location spoofing attacks including one solution for fusing the data 
that are readily available from the vehicle’s On-Board Unit (OBU), in an in-vehicle attack detection 
approach, and another solution that fuses information from neighbouring vehicles, in a centralised 
collaborative attack detection scheme. These solutions are validated experimentally by using realistic 
data obtained through the CARLA simulator, while the methodology to combine them in a hybrid 
approach is also presented. 
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1.2 Structure of this Document 

The remainder of this document is structured as follows:  

 Section 2 – Sensor Fusion Solutions for Detecting Camera Attacks: describes two 
solutions for detecting attacks on the camera sensors followed by respective mitigation 
mechanisms, namely i) one solution based on LiDAR as an auxiliary data source and ii) another 
solution based on imagery and GPS data that leverages Machine Learning (ML) techniques. 

 Section 3 – Sensor Fusion Solutions for Detecting GPS Location Spoofing Attacks: 
elaborates on two standalone solutions for detecting GPS location spoofing attacks, namely i) 
by fusing in-vehicle sensor readings and ii) by means of a collaborative GPS spoofing defence 
mechanism that relies on multi-modal sensor fusion among the vehicles of a VANET. 

 Section 4 – Combination of Standalone Fusion Solutions: discusses how the standalone 
attack detection solutions presented in Section 2 and Section 3 can be coupled to provide 
enhanced situational awareness against camera attacks and location spoofing attacks, 
respectively. 

 Section 5 – Conclusion: provides concluding remarks and some directions for further 
research. 

1.3 Relation to other Tasks and Deliverables 

Deliverable D4.3 is related to the following tasks and deliverables: 

 Task 2.1 – Use Cases Elaboration / D2.1 – Report on Detailed Specification of Use Cases: 
D4.3 receives the definition of the CARAMEL use cases, as well as the technical evaluation 
strategy deployed within the project. 

 Task 2.3 – Analysis of Security and Privacy Requirements / D2.3 – Specifications of 
CARAMEL Security and Privacy Requirements: D4.3 considers the user, security and 
privacy requirements defined in D2.2 and D2.3, with focus on the definition of the various 
scenarios for each CARAMEL use case. 

 Task 2.4 – System Specifications and Architecture / D2.4 – System Specifications and 
Architecture: D4.3 receives the overall system architecture from D2.4, including the definition 
of attack types related to the camera and GPS sensors, as well as the associated interfaces. 

 Task 3.1 – Automotive Threat Modelling / D3.1 – Automotive Threat Modelling: D4.3 
receives the threat analysis and the definition of assets, access points, and systems present in 
the automotive sector from D3.1, focusing on the threats against the camera and GPS sensor. 

 Task 3.2 – Cyberthreat Detection Using Sparse and Deep Priors / D3.2/D3.5 Cyberthreat 
Detection Using Sparse and Deep Priors: D4.3 will receive the algorithms for camera image 
preprocessing and attack mitigation. 

 Task 3.3 – Cyberthreat Detection and Response Techniques for Cooperative Automated 
Vehicles / D3.6 – Cyberthreat Detection and Response Techniques for Cooperative 
Automated Vehicles: D3.6 presents the workflow of the GPS spoofing attack detection 
solutions detailed in D4.3 and describes how an alert will be triggered, either at the vehicle’s 
OBU for the in-vehicle solution (Section 3.2) or at the network side for the collaborative multi-
vehicle solution (Section 3.3), after an attack is detected.  

 Task 4.2 – AI-based Context-rich and Context-aware Cybersecurity / D4.2 – Robust to 
Cyberattack Machine Vision Models Based on Improved Training Methods and 
Anomaly Detection Deep Networks: D4.3 will integrate the outcome of anomaly detection 
and mitigation results with respect to attacks on camera sensors from D4.2. 

 Task 5.1 – Report on the Collection and Storage of Data from Smart Vehicle's Internal 
Network / D5.2 – Report on the Collection and Storage of Data from Smart Vehicle's 
Internal Network: D5.2 will describe in detail the data types and processing steps for the 
measurements required as inputs to the both the standalone and combined attack detection 
solutions described in D4.3.  

 Task 5.2 – Advanced Algorithmic Detection of Attacks via passive Anti-hacking Device / 
D5.3 – Machine Learning based Detection of Attacks into Anti-hacking Device: D5.3 will 
present how the attack detection solutions described in D4.3 will be implemented and integrated 
into the anti-hacking device. 



CARAMEL (No. 833611) D4.3 March 2021 

Page 13 of 64 

 

 

2 Sensor Fusion Solutions for Detecting Camera Attacks 

2.1 Detecting Camera Attacks using LiDAR 

This section describes how to mitigate attacks in autonomous driving systems using LiDAR as an 
auxiliary data source. Considering that the perception module, that uses data only from the camera, 
has been attacked, an independent module using only raw 3D point clouds tries to provide the correct 
scene understanding. 

2.1.1 Sensors and Measurements 

The camera and LiDAR sensors are considered in this solution. The camera will detect objects or 
structural elements with some confidence and the LiDAR will provide auxiliary measurements for the 
same objects. Although, before explaining the detection part, a short introduction about the camera and 
LiDAR sensor is provided. The raw data used for training in these tasks can be accessed from Kitti1. 
Kitti vehicle uses a bunch of sensors but we use data from the colour camera FL2-14S3C-Cand a 
Velodyne HDL-64E 

 Camera: PointGray Flea2 colour camera (FL2-14S3C-C), 1.4 Megapixels, 1/2” Sony ICX267 CCD, 
global shutter. Images files are 8-bit PNG files and the Kitti dataset provides the rectified images. 

 Velodyne: 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64 beams, 0.09-degree 

angular resolution, 2 cm distance accuracy, collecting ∼ 1.3 million points/second, field of view: 
360𝑜  horizontal, 26.8𝑜vertical, range: 120 m. 

In general, cameras can be classified as visible (VIS) or infrared (IR) based on the wavelength received 
by the device. The element used by the camera to sense the environment is known as an imaging 
sensor and uses two technologies: Charge-coupled device (CCD) and complementary metal-oxide 
semiconductor (CMOS). VIS cameras capture wavelengths between 400 nm to 780 nm, the same as 
the human eye can. IR cameras are passive sensors that work in infrared (IR) wavelengths ranges 
between 780 nm to 1 mm. Many devices work in this spectrum because fewer light interferences exist 
(e.g., LiDARs). Perception systems that include IR cameras work in near-infrared (NIR: 780 nm–3 mm) 
or mid-infrared (MIR: 3 mm–50 mm, known as thermal cameras) ranges. The uses of NIR usually 
replace or complement VIS cameras [2]. Another category of camera sensors, is Time-of-Flight (ToF) 
cameras. ToF cameras are active sensors that use the time of flight principle to obtain a 3D 
representation of the objects in the scene. ToF cameras emit NIR light pulses of 850 nm with an LED 
(Light Emitting Diodes) 

As for LiDAR systems, they were initially developed in the 70s to measure elements in sea or land from 
satellites or aeroplanes. The ToF principle is used in LiDARs to measure the distance between emission 
and reception. They can be classified according to the type of information they obtain from their 
environment in 2D or 3D LiDARs or they can be classified according to their construction rotary or solid-
state LiDAR. A pulsed light emitted from a laser diode until it is received by an emitter and the set of 
diodes lasers used are mounted on a pod that rotates at high speed. This is graphically illustrated in 
Figure 2.1. 3D LiDARs are most commonly used in autonomous driving and they allow to obtain a 3D 
map of the surrounding environment with high accuracy. Currently, 3D LiDARs can integrate from 4 to 
128 channels with a horizontal FOV of 360 grades and vertical FOV that oscillates between 20–45 
grades with the accuracy of a few centimetres. 

 

                                                      

1 http://www.cvlibs.net/datasets/kitti-360/  

http://www.cvlibs.net/datasets/kitti-360/
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Figure 2.1. Rotating 3D LiDAR 

 

2.1.2 Relevance to Attack Scenarios 

In a computer vision system based on the camera sensor, image quality is the most important and 
moving automated vehicles brings a few challenges. Indeed, the image quality is affected by lenses, 
windshield, vibration, environmental conditions (e.g. light, rain, snow), potentially causing objects to get 
unnoticed. Exploiting the limitations of the camera sensor an attacker could corrupt the image. The most 
significant distinction between sensor attacks and cyber-attacks is the use of physical channels. Sensor 
attacks utilize the same physical channels as the targeted sensor in most cases, which can disrupt or 
manipulate the sensor readings. Since sensors are categorized as the lower layers of a control system 
and are normally trusted, falsified readings could lead to unexpected consequences of a system.  

Assuming that the attacker is outside the vehicle (external attack) and targets sensor data acquisition, 
attacks on cameras can target its features such as automatic exposure controls, auto-focus or light 
sensitivity. Indeed, cameras normalize lighting conditions via an iterative process. When light is directed 
at the image sensor, it will tune down its sensitivity and exposure to improve the image quality according 
to predefined settings. This can lead to undesired effects, for instance when the auto exposure tunes 
down due to headlights at night. This could hide information in the background, such as traffic signs, 
road edges or pedestrians [3]. 

If we now assume that the attacker has access to the perception systems (internal attack) and its 
modalities these contain known bugs and vulnerabilities which can be exploited by the attackers. We 
are interested in attacks that can exploit the hardware and specifically camera sensors. A possible way 
to perform such an attack is through the ECU Firmware tampering attack. ECU (Engine control unit) is 
an electronic control module for the sensors and actuators of any sub-system in a vehicle and a typical 
vehicle consists of more than 100 ECU’s [4]. Attackers target to reflash the ECU with custom firmware 
altering its state and inducing malicious and unintended actions. To perform this kind of attack physical 
access to the ECU is needed. Attacker updates the firmware of ECU using the external interface thus 
altering the functionality of ECU. By altering the ECU memory and tampering the security keys and 
maintaining the integrity of the ECU firmware code and its updates using the hashing techniques and 
authentication for software updating [4].  

So, if an attacker manages by accessing the software to alter the output of the camera with adversaries 
the integrity of the whole system would be compromised. Adversaries alter original inputs with 
perturbations, which may be imperceptible to the human eye, but can force a trained model to produce 
incorrect outputs. Szegedy et al. [5] first discovered that state-of-art deep neural networks are 
susceptible to adversarial attacks. Speculative explanations suggested it was due to the extreme non-
linearity of deep neural networks, combined with insufficient model averaging and insufficient 
regularization of the purely supervised learning problem. Studies on adversarial attacks have developed 
attacks for image classification models [6][7], used for multiple vision tasks such as object detection 
[8][9], object tracking [10], and semantic segmentation [9]. 

Overall as the automation level of the vehicle increases using outputs from one sensor gives greater 
flexibility to the intruder to harm the system. Additional information is needed and is the deliverable we 
will try to robust the perception system of the AV taking additional information from LiDAR. 
Environmental and lighting conditions, changed or not by an attacker, may affect camera sensors. 
LiDAR, in contrast, offers precise 3D measurement data over short to long ranges, regardless of 
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weather and lighting conditions. In Table 2.1 the LiDAR adaptation is summed up according to the Level 
of Autonomy. The Key Benefits of LiDAR are: 

 Resolution & Accuracy: LiDAR generates instantaneous, massive amounts of measurements, and 
can be accurate to a centimetre. 

 3D Mapping: LiDAR data can be easily converted into 3D maps to interpret the environment. 

 Low Light Performance: LiDAR is unaffected by ambient light variations, and performs well in low 
any light conditions. 

 Speed: LiDAR data are direct distance measurements that don’t need to be deciphered or 
interpreted – thus enabling faster performance and reducing processing requirement. 

 

Table 2.1. LiDAR Adaptation per Level of Autonomy. 

Level of Autonomy and Description LiDAR 
Adaptation 

Level 1 - Driver Only: Driving tasks are being executed exclusively by human drivers. 
Example of Applications: Automatic Emergency Braking (AEB), Adaptive Cruise 
Control (ACC), Lane Keep Assist (LKA) 

Little to no 
LiDARs 

Level 2 - Driver Assistance: The driver is responsible for either longitudinal or lateral 
control. The rest of the tasks can be automated to a certain extent by the assistance 
system. Example of Applications: Parking Assist (PA), Traffic Jam Assist (TJA) 

Some will 
use LiDARs 

Level 3 - Partial automation: The control unit takes over longitudinal and lateral 
control, although the driver shall be aware to take over control at any time needed 
Example of Applications: Highway Pilot 

Most will use 
LiDARs 

Level 4 - High automation: The control unit takes over longitudinal and lateral control 
while the driver is no longer required to be aware of monitoring the system. In case 
of a take-over request, the driver must take-over control with a certain time degree of 
request, the driver must take-over control with a certain time buffer. Example of 
Applications: Automated Urban Mobility 

LiDAR is 
necessary 

Level 5 - Full automation: The control unit takes over longitudinal and lateral control 
completely and permanently. In case of a takeover request that is not followed, the 
system will return to the minimal risk condition by itself. Example of Applications: 
Full Automation 

LiDAR is 
necessary 

 

 

2.1.3 Methodology Description 

To segment, detect, and classify objects in an autonomous vehicle scene with robust and discriminative 
performance there are quite a few challenges that need to be addressed. Despite current state-of-art 
methods based solely on camera data seem to achieve astonishing results under normal imaging 
conditions, they fail in adverse weather and imaging conditions. Existing training datasets are biased 
towards clear weather conditions, and detector architectures are designed to rely only on the redundant 
information in the undistorted sensory streams. So, in a scenario that a sensor fails on specific 
conditions or, as in our case, has been attacked using a system relying on multiple sensor modalities 
gives a more robust result. There are three different fusion strategies that have been used so far in 
literature in order to exploit the advantages that each modality offers. So, we have early, late and deep 
fusion.  
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● Early fusion: Modalities are combined at the beginning of the process, creating a new 
representation that is dependent on all modalities.  

● Late fusion: Modalities are processed separately and independently up to the last stage, where 
fusion occurs. This scheme does not require all modalities to be available as it can rely on the 
predictions of a single modality.  

● Deep fusion: Modalities are mixed hierarchically in neural network layers, allowing the features 
from different modalities to interact over layers, resulting in a more general fusion scheme.  

 

We choose to go with a late fusion strategy. Given that the camera is attacked the data coming from it 
would be unreliable to use them in the feature extraction level. In late fusion, or else decision fusion, 
multiple classifiers are used to generate decisions that are then combined to form a final decision, as 
shown in Figure 2.2.  

 

Figure 2.2. Abstract sensor fusion architecture describes where the late fusion occurs. 

Specifically, in our case, we fuse the output of our segmentation model with the output of a deep learning 
model for 3D object detection based only on raw LiDAR frames. So, we can decide whether the camera 
has been attacked or not by correlating the two outputs. The overall architecture can be seen in Figure 
2.3. Next, we will analyse the structure of the deep learning model that has been used for object 
detection. 

 

Figure 2.3. The overall pipeline of the perception module. 

2.1.3.1 Object detection Using DL on LiDAR 

 

A brief review of the state of art model on 3D object detection  

 

Current state-of-art methods for 3D object detection proposed several ways to extract feature 
information from the sparse 3D point clouds. Many researchers tried to exploit pre-existing 2D CNN 
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architectures by projecting point cloud to bird’s view for 3d box generation [11][12][13]. Another 
approach that has quite reliable results is to group the points into voxels and with the use of 3D CNN 
to learn the features of voxels to generate 3D boxes [14][15]. Due to the projection, and the voxelization 
stage the aforementioned methods suffer from loss of information. A significant step towards a better 
scene analysis of 3d raw point clouds was the network PointNet and PointNet++ [16][17] PointNet 
architecture directly learn point features from raw point clouds, which greatly increases the speed and 
accuracies of point cloud classification and segmentation, instead of representing the point cloud as 
voxels or multi-view formats. The network PointRCNN [18], that we used for object detection uses 
PointNet as a backbone. More details about PointRCNN [18], are provided in the next section.  

  

PointRCNN architecture for Point Cloud 3D Detection  

  

The model that we used is PointRCNN [18] and is one of the current state-of-art models for 3D object 
detection. The overall architecture of the model as it is proposed in [18] is illustrated in Figure 2.4. 
PointRCNN [18] is a bottom-up point cloud-based 3D bounding box proposal generation algorithm, 
which generates a small number of high-quality 3D proposals via segmenting the point cloud into 
foreground objects and background. So, the model consists of a bottom-up 3D proposal generation 
stage and a stage for the refinement of the bounding boxes. 

 

Figure 2.4. [18] The PointRCNN architecture for 3D object detection from point clouds. The 
whole network consists of two parts: (a) for generating 3D proposals from raw point cloud in a 

bottom-up manner. (b) for refining the 3D proposals in canonical coordinate. 

Bottom-up 3D proposal generation via point cloud segmentation: In order to learn pointwise 
features for describing the raw point cloud, PointRCNN [18] uses as a backbone network PointNet++ 
[16]. The network uses foreground points to gain some knowledge of the locations and orientations of 
the associated objects. 

● Foreground points: All 3D objects’ segmentation masks could be directly obtained by their 3D 
bounding box annotations. 3D points inside 3D boxes are considered as foreground points.  

 

Given the pointwise features encoded by PointNet++ [16] one segmentation head is appended, for 
estimating the foreground mask and one box regression head for generating 3D proposals. For point 
segmentation, the ground-truth segmentation mask is naturally provided by the 3D ground-truth boxes. 
Thus, the focal loss [19] is used to handle the class imbalance problem as:  
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𝐿𝑓𝑜𝑐𝑎𝑙(𝑝𝑡)  = −𝑎𝑡(1 − 𝑝𝑡)
𝛾𝑙𝑜𝑔 (𝑝𝑡) 

 

, where 𝑝𝑡 = 𝑝 for foreground point and 𝑝𝑡= 1 − 𝑝 otherwise. 

 

Simultaneously with the foreground point segmentation problem, a box regression problem is handled. 
A 3D bounding box is represented as (𝑥, 𝑦, 𝑧, ℎ, 𝑤, 𝑙, 𝜃) in the LiDAR coordinate system, where (𝑥, 𝑦, 𝑧) 
is the object centre location, (ℎ, 𝑤, 𝑙) is the object size, and 𝜃 is the object orientation from the bird’s 
view. For the estimation of the centre location, the neighbourhood for each foreground point is being 
split in discrete bins along the 𝑋 and 𝑍 axes instead of handling a direct regression problem.  

The localization loss for the 𝑋or 𝑍 axis consists of two terms, one term for bin classification along each 
𝑋 and 𝑍 axis, and the other term for residual regression within the classified bin. The centre location 𝑦 

along the vertical 𝑌axis, using the 𝐿1 loss is enough for obtaining accurate 𝑦 values because 𝑦 values 
are within a very small range.  

 

The localization targets are formulated as:  

 

 

𝑏𝑖𝑛𝑥
(𝑝)
= ⎣

𝑥𝑝 − 𝑥(𝑝) + 𝑆

𝛿
⎦, 𝑏𝑖𝑛𝑧

(𝑝)
= ⎣

𝑧𝑝 − 𝑧(𝑝) + 𝑆

𝛿
⎦, 

 

𝑟𝑒𝑠𝑢
(𝑝)
=
1

𝐶
(𝑢𝑝 − 𝑢(𝑝) + 𝑆 − (𝑏𝑖𝑛𝑢

(𝑝)
⋅ 𝛿 +

𝛿

2
)), 𝑢 ∈ {𝑥, 𝑧} 

 

𝑟𝑒𝑠𝑦
(𝑝)
= 𝑦𝑝 − 𝑦(𝑝) 

 

● (𝑥(𝑝), 𝑦(𝑝), 𝑧(𝑝)) are the coordinates of a foreground point of interest,  
● (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is the centre coordinates of its corresponding object,  

● 𝑏𝑖𝑛𝑥
(𝑝) and 𝑏𝑖𝑛𝑧

(𝑝) are the ground-truth residual for further location refinement within the assigned 

𝑋 and 𝑍 axis,  

● 𝑟𝑒𝑠𝑥
(𝑝)
 𝑎𝑛𝑑 𝑟𝑒𝑠𝑧

(𝑝)
 are the ground-truth residual for further location refinement within the 

assigned bin, 
● 𝐶 is the bin length for normalization.  

 

The estimation of the orientation 𝜃 and size (ℎ, 𝑤, 𝑙) is done based on [20]. The overall 3D regression 

loss 𝐿𝑟𝑒𝑔 with different loss terms for training could then be formulated as:  

 

 

𝐿𝑏𝑖𝑛
(𝑝)

= ∑ (𝐹𝑐𝑙𝑠(𝑏𝑖�̂�𝑢
(𝑝)
, 𝑏𝑖𝑛𝑢

(𝑝)
)  +  𝐹𝑟𝑒𝑔(𝑟𝑒�̂�𝑢

(𝑝)
, 𝑟𝑒𝑠𝑢

(𝑝)
))

𝑢∊{𝑥,𝑧,𝜃}

 , 

 

𝐿𝑟𝑒𝑠
(𝑝)

= ∑ (𝐹𝑟𝑒𝑔(𝑟𝑒�̂�𝑣
(𝑝)
, 𝑟𝑒𝑠𝑣

(𝑝)
) 

𝑣∊{𝑦,ℎ,𝑤,𝑙}

, 
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𝐿𝑟𝑒𝑠
(𝑝)

= 
1

𝑁𝑝𝑜𝑠
∑ (𝐿𝑏𝑖𝑛

(𝑝)
 +  𝐿𝑟𝑒𝑠

(𝑝)
)

𝑝∊𝑝𝑜𝑠

 

 

𝑁𝑝𝑜𝑠  is the number of foreground points 

 

● 𝑏𝑖�̂�𝑢
(𝑝)

 and 𝑟𝑒�̂�𝑢
(𝑝)

 are the predicted bin assignments and residuals of the foreground point 𝑝 

● 𝑏𝑖𝑛𝑢
(𝑝)

 and 𝑟𝑒𝑠𝑢
(𝑝)

 are the ground-truth targets calculated as above 

● 𝐹𝑐𝑙𝑠 denotes the cross-entropy classification loss, 

● 𝐹𝑟𝑒𝑔 denotes the smooth L1 loss.  

 

 Point cloud region pooling  

 

After having the region proposal for the 3D bounding box for refining the specific location PointRCNN 
[18] proposes to pool 3D points. So, each 3D box proposal 𝑏𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , ℎ𝑖 , 𝑤𝑖 , 𝑙𝑖 , 𝜃𝑖) is enlarged by a 
constant n and each point that is inside the enlarged 3D bounding box is being kept, alongside its 
features for refining the box bi. The features associated with the inside point p include its 3D point 

coordinates (𝑥(𝑝), 𝑦(𝑝), 𝑧(𝑝))  ∊  𝑅, its laser reflection intensity 𝑟(𝑝) ∊ 𝑅, its predicted segmentation mask 

𝑚(𝑝) ∊ {0,1} from stage-1, and the 𝐶-dimensional learned point feature representation 𝑓(𝑝)  ∊  𝑅𝐶 from 
stage-1.  

 

 Canonical 3D bounding box refinement  

  

The pooled points and their associated features for each proposal are given as input to the stage-2 sub-
network. Each pooled point is being transformed into the canonical coordinate system of the 
corresponding 3D proposal. This means that the origin is located at the centre of the box proposal and 
that the local 𝑋′and 𝑍′ axes are approximately parallel to the ground plane with 𝑋′ pointing towards the 

head direction of the proposal and the 𝑍′ axis is perpendicular to 𝑋′.𝑌′ axis remains the same as that 
of the LiDAR coordinate system. 

The canonical transformation enables robust local spatial features learning although because it loses 
depth information of each object the distance to the sensor is included in the features of point 𝑝. The 
local spatial features are first concatenated and fed to several fully connected layers to encode their 

local features to the same dimension of the global features 𝑓(𝑝). Then the local features and global 
features are concatenated and fed into a network and a discriminative feature vector is obtained for the 
following confidence classification and box refinement. For box proposal refinement the bin-based 
regression losses for proposal refinement is adopted as in stage one. 

2.1.3.2 Fusion Scheme 

 

From LiDAR coordinate system to camera coordinate system: As presented in [21], for the sensors 
to be synchronized the timestamps coming from the LiDAR are used as a reference and each spin is 
considered as a frame. The LiDAR keeps rotating to collect the data and the camera is triggered every 
time it faces forward. To project a 3D point 𝑋 = (𝑥, 𝑦, 𝑧, 1)𝑇 in the rectified (rotated) camera coordinates 

to a point 𝑌 = (𝑢, 𝑣, 1)𝑇: 

𝑌 = 𝑃𝑟𝑒𝑐𝑡𝑋, 
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𝑃𝑟𝑒𝑐𝑡 = (
𝑓𝑢 0 𝑐𝑢
0 𝑓𝑣 𝑐𝑣
0 0 1

  
−𝑓𝑢𝑏𝑥
0
0

) 

 

 

𝑏𝑥  denotes the baseline (in meters) with respect to the reference camera. 

Note that in order to project a 3D point x in reference camera coordinates to a point 𝑌 on the image 
plane, the rectifying rotation matrix of the reference camera 𝑅𝑟𝑒𝑐𝑡 must be considered as well: 

 

𝑌 = 𝑃𝑟𝑒𝑐𝑡  𝑅𝑟𝑒𝑐𝑡  𝑋 

 

𝑅𝑟𝑒𝑐𝑡 has been expanded into a 4x4 matrix by appending a fourth zero-row and column and setting 
𝑅𝑟𝑒𝑐𝑡(4,4) = 1 

Velodyne laser scanner with respect to the reference camera coordinate system is registered using 
[22]. The rigid body transformation from Velodyne coordinates to camera coordinates are given from: 

● 𝑅𝑣𝑒𝑙𝑜
𝑐𝑎𝑚 ∈ 𝑅3𝑥3…... rotation matrix: Velodyne → camera 

● 𝑡𝑣𝑒𝑙𝑜
𝑐𝑎𝑚 ∈ 𝑅1𝑥3….... translation vector: Velodyne → camera 

● using  𝑇𝑣𝑒𝑙𝑜
𝑐𝑎𝑚 = (

𝑅𝑣𝑒𝑙𝑜
𝑐𝑎𝑚 𝑡𝑣𝑒𝑙𝑜

𝑐𝑎𝑚

0 0
) 

Hence, a 3D point x in Velodyne coordinates gets projected to a point Y in the camera image as below: 

𝑌 = 𝑃𝑟𝑒𝑐𝑡𝑅𝑟𝑒𝑐𝑡  𝑇𝑣𝑒𝑙𝑜
𝑐𝑎𝑚  𝑋 

 

Fusion Scheme Architecture: So, after we perform semantic segmentation to the attacked image, the 
output will resemble Figure 2.5 image (b). Most of the vehicles are hidden from the prescription engine 
due to the attack on the camera sensor. In Figure 2.5 image (a) we can see the output of the 
segmentation model in the non-attacked image. 

 

(a) 
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(b) 

 

Figure 2.5. Image (a) is the output of the segmentation model to the non-attacked image while 
in the image (b) is the output of the segmentation model to the attacked image. The red mask 

indicates the detected vehicles. 

In a parallel module, the object detection model is running, which has been trained to identify only the 
moving objects which are mainly vehicles, pedestrians and cyclists. In Figure 2.6(a) we can see the 3D 
bounding boxes of the vehicles that have been detected on LiDAR sensor data. Most of the vehicles 
have been identified from the model. After obtaining the coordinates of the 3D bounding boxes, they 
are being projected to the images plane in order to correlate the 2D image segmentation output and the 
3D object detection output (Figure 2.6(b)). 

 

(a)  



CARAMEL (No. 833611) D4.3 March 2021 

Page 22 of 64 

 

 

(b) 

 

Figure 2.6. (a)The output of PointRCNN to 3D space in the LiDAR coordinate system. (b)The 
projected output of PointRCNN to the image plane. 

More specifically in order to correlate the two outputs, we isolate the region of the projected 3d bounding 
box to the image. We consider that the isolated region belongs to a specific class (vehicle, pedestrian, 
cyclist). We isolate respectively the same region from the segmentation mask. Finally, we compare the 
two outputs in order to estimate the overlap between the two segmentation masks. If the object has 
been detected by both of the modalities the overlap should be high enough. Structural similarity index 
measure (SSIM) [23] is used for the comparison and should be above 0.6. The scheme for comparing 
the two outputs is presented in the Figure 2.7. 

 

 

Figure 2.7. Comparison scheme. The 3D isolated projected objects are compared respectively 
with the segmentation output. 

2.1.4 Validation of Methods 

The proposed pipeline aiming to provide improved situational awareness to the user consists of two 
modules. The first one refers to the robust image segmentation model and the second to the 3D object 
detector using the LiDAR sensor. Hence, taking into consideration the first model, some evaluation 
metrics are shown below. Multiple attacks were implemented with different sizes of perturbation for 
evaluation purposes. Some of the implemented attacks on the camera sensor are shown below: 
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● Untargeted attacks 

○ BIM 

○ FGSM 

○ PGD 

● Targeted attacks referring to cars 

○ LinfPGD 

○ MomentumIterative 

The Intersection over Union (IoU) is the primary metric used in evaluating segmentation outputs. The 
evaluation of the robust segmentation model of DeeplabV3 on the KITTI benchmark are illustrated in 
Table 2.2 and Table 2.3. Table 2.2 refers to untargeted attacks and Table 2.3 to targeted attacks. 

 

Table 2.2. Evaluation results (IoU) for untargeted attacks between robust and original 
segmentation. 

Resnet = 152 BIM FGSM PGD 

Model e=2 e=4 e=8 e=16 e=2 e=4 e=8 e=16 e=2 e=4 e=8 e=16 

Robust 0.42 0.1 0.03 0.03 0.75 0.71 0.66 0.5 0.74 0.72 0.72 0.52 

Original 0.13 0.02 0.01 0.01 0.67 0.51 0.21 0.03 0.69 0.53 0.17 0.03 

 

Table 2.3. Evaluation results (IoU) for targeted attacks between robust and original 
segmentation model. 

Resnet = 152 LinfPGD 

target = 2 target = 7 

Model e=2 e=4 e=8 e=16 e=2 e=4 e=8 e=16 

Robust 0.75 0.7 0.62 0.5 0.75 0.71 0.63 0.46 

Original 0.69 0.58 0.37 0.17 0.69 0.53 0.26 0.1 

Resnet = 152 MomentumIterative 

target = 2 target = 7 

Model e=2 e=4 e=8 e=16 e=2 e=4 e=8 e=16 

Robust 0.71 0.68 0.62 0.35 0.72 0.68 0.61 0.34 
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Original 0.65 0.5 0.17 0.02 0.65 0.37 0.12 0.02 

 

From Table 2.2 and Table 2.3, we observe that our goal to provide a robust segmentation model for 
adversarial attacks in 2D space has been achieved. Next, some evaluation results of the 3D object 
detector coming from the LiDAR data are illustrated. 

The evaluation of the 3D object detection model PointRCNN tested on the KITTI benchmark is shown 
in Table 2.4. For the 3D detection of car and cyclist, PointRCNN method outperforms previous state-
of-the-art methods with remarkable margins on all three difficulties and ranks first on the KITTI test 
board among all published works at the time of its submission. Although most of the previous methods 
use both RGB image and point cloud as input. For pedestrian detection, compared with previous LiDAR-
only methods, our PointRCNN method achieves better or comparable results, but it performs slightly 
worse than the methods with multiple sensors. 

 

Table 2.4. [18] Performance comparison of 3D object detection with previous methods on KITTI 
test split by submitting to the official test server. The evaluation metric is Average Precision 

(AP) with IoU threshold 0.7 for car and 0.5 for pedestrian/cyclist. 

Method Modality Car (IoU=0.7) Pedestrian (IoU=0.5) Cyclist (IoU=0.5) 

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard 

MV3D RGB+LiDAR 71.09 62.35 55.12 - - - - - - 

UberATG-ContFuse  RGB+LiDAR 82.54 66.22 64.04 - - - - - - 

AVOD-FPN RGB+LiDAR 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61 

F-PointNet RGB+LiDAR 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39 

VoxelNet LiDAR 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37 

SECOND LiDAR 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90 

PointRCNN LiDAR 85.94 75.76 68.32 49.43 41.78 38.63 73.93 59.60 53.59 

Finally, some more experiments on the KITTI dataset were conducted to evaluate the overall proposed 
pipeline, that combines the 2D image segmentation with the 3D object detector. Hence, the LiDAR 
module is triggered only when an external attack to the camera sensor has been detected. In a safe 
situation, the final result is coming only from the camera sensor, as we can observe from the green cells 
from Table 2.5. On the other hand, when a dangerous situation has been detected, the output of the 
3D detector is given to the output of the perception engine, ignoring the camera results. In the latter 
cases, the model performs better as we can observe from orange cells in Table 2.5. 
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Table 2.5. Evaluation results (IoU) fusing multiple sensor data. 

Data Type 
IoU 

Camera 

IoU 

Camera + LiDAR 

Samples 

Normal 76 76 250 

Attacked eps  

2 16 2 16 

Untargeted 

 Attacks 

FGSM 75 50 75 82  

 

 

 

 

 

250 

PGD 74 52 74 81 

BIM 42 3 82 81 

Targeted   

Attacks 

 

Momentum 

Iterative 

71 35 71 80 

Fused Model Accuracy 78 500 

 

2.2 Validating Traffic Sign Attacks with GPS measurements 

The fusion of sensors such as LiDAR, Camera and GPS are commonly used in perception engines in 
autonomous vehicles [24]. Fusion of multisensory data can provide not only insights on the events but 
also can be used for robustification of an existing pipeline. There are a number of applications to apply 
sensor fusion such as 3D object detection [25], improved GPS area localisation [26], occupancy grid 
mapping [27], tracking of moving objects [28] and much more. Likewise, post-analysis of using such 
sensor fusion mechanisms also can provide an in-depth knowledge on vehicles’ behaviours and in 
particular for the identification of anomalies. 

GPS sensors are an essential part of autonomous vehicle systems. It provides geo-location information 
which enables autonomous vehicles to navigate from one place to another [29]. Likewise, camera 
sensors are another vital part of autonomous vehicles which capture images of the external 
environment. These images are used to perform scene analysis that is essential for autonomous 
vehicles, including tasks such as detection of objects and pedestrians [30], traffic lane [31], and traffic 
signs recognition [32] using Machine Learning approaches. 
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2.2.1 Relevance to Attack Scenarios 

A specific scenario was considered to demonstrate the use of multi-sensor fusion mechanisms using 
Deep Learning architecture to detect anomalies. A vehicle simulator called CARLA [33] has been used 
to generate the training data as well as a validation environment. The study examines both internal 
components such as GPS as well as external environments such as traffic signs. As shown in the Figure 
2.8 and Figure 2.9, six different scenarios are considered in this experiment and the proposed multi-
model fusion will detect abnormal activities of vehicles based on GPS, speed and traffic signs. Figure 
2.8, shows the correct behaviour of the autonomous vehicles where the vehicle manages to follow 
multiple traffic signs correctly such as correct direction under the speed limit. Figure 2.9 shows the 
abnormal behaviour of the vehicle where either the vehicle is moving over the speed limit or moving in 
the wrong direction. 
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Figure 2.8. The correct cases of the autonomous vehicles’ behaviours in regards GPS and the 
traffic sign data. 

 

Figure 2.9. The incorrect cases of the autonomous vehicles behaviours in regards GPS and the 
traffic sign data. 

2.2.2 Sensors and Measurements 

The three types of sensors have been selected a) GPS, b) Speedometer and b) Camera. The data 
captured by GPS, Speedometer and Camera are processed further based on the requirement of 
the fusion model. 
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Figure 2.10. Left - 2D GPS location with colour indication of the vehicle’s speed. Right - Top 
down view of the data overlaid on the CARLA [33] environment. 

2.2.3 Methodology Description 

There are a number of ways multi-sensor fusion can be achieved. However, image-based methods 
have been used to demonstrate the capability of fusion mechanisms. The image-based approach allows 
the architecture to be simple and effective using Convolutional Neural Networks (CNN). CNNs are 
widely used in Computer Vision (CV). It has also been shown that CNNs work well in other fields such 
as GPS trajectories prediction [34], Traffic Speed regression [35], and much more. 

 

 

Figure 2.11. The overall flowchart of detecting anomaly behaviours using multiple-sensors in 
autonomous vehicles. 

2.2.3.1 Data Generation 

The CARLA [33] Simulator was used to generate data for training and testing purposes. Three types of 
data were captured: GPS location, vehicle speed and a sequence of image frames. By default, GPS 
values are in a longitude and latitude format including a timestamp and speed in number format. These 
values were converted into X and Y points/pixel coordinates while the speed was represented with 
coloured heatmap as shown in Figure 2.10 (left). Both the input data (GPS and traffic signs) are in an 
RGB (Red, Green and Blue) format with fixed resolution. Figure 2.12 shows the overall flow chart of the 
data generation process.  
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Figure 2.12. Flowchart of data generation process. 

 

Table 2.6. Total data generated from CARLA [33] Simulator. 

Type Image Sequence 
Sets 

GPS Sequence 
Sets 

Speed Sequence 
Sets 

Training 87 87 87 

Testing 108 108 108 

 

As shown in Table 2.6, a total of 87 sets of Image frames, GPS and Speed value sequences were 
generated for training purposes. All the sets for training represent the normal behaviours of the 
autonomous vehicles where the car follows the direction and the speed limit according to the traffic 
signs. Whereas, the test set includes 54 sets of normal and 54 sets abnormal behaviour data as shown 
in Figure 2.9. Likewise, each set has at least 1000 GPS points. In addition, a meta traffic sign has been 
generated to train the model. The meta traffic sign is a clean version of traffic signs without any artefacts. 

 

2.2.3.2 Architecture 

A Deep Learning model has been developed to identify the abnormal behaviour of the autonomous 
vehicle. The model is based on Generative Adversarial Network (GAN) architecture where two different 
networks generator and discriminator compete against each other during the training. The generator 
has two-head architecture which takes two different inputs: GPS maps and traffic signs. The primary 
goal of the generator is to map the GPS, Speed and traffic signs into appropriate meta traffic signs. 
Whereas the discriminator learns to distinguish the original meta traffic sign and generated ones. Figure 
2.13 shows the overall architecture of the developed GAN and Table 2.7, shows the output shape of 
the model and the corresponding parameters in each network. In total there are 5,015,159 parameters 
in the proposed GAN. During the training phase, both models were utilised however only the generator 
was used for testing purposes. 
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Figure 2.13. The GAN architecture of Anomaly detection model. 

Table 2.7. Output and total number of parameters in GAN architecture. 

Layer (type) Output Shape Parameters 

input_1 48x48x3 0 

input_2 48x48x6 0 

Generator (Model) 48x48x6 4310582 

Discriminator (Model) 1 704577 

 Total parameters 5,015,159 

 

The core attribute of the generator is the dimensionality reduction that is performed following the 
architecture of Autoencoder [36]. While the Autoencoder is an unsupervised method, the generator is 
a supervised one where inputs and outputs are provided during the training phase. The principal aim of 
the generator is to learn the mapping of the GPS data and the traffic signs, as precisely as possible. 
Once the network is trained, it is assumed that it has learnt the characteristics of the input and target 
data. Finally, only normal data were used to train the network and it is assumed the model can 
reconstruct with high accuracy data similar to the ones used during the training stage. Hence, this 
property of the proposed architecture can be used for detecting abnormal data considering them as 
failed reconstructions. 
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Table 2.8. The two-head architecture of the generator used the same layout till the 
concatenation layers. 

Layer  Output Shape Kernel 
size 

Strids Activation 
function 

Filters 

input_1  48x48   ReLU 3 

conv2d_1  48x48 3  ReLU 32 

max_pooling  24x24  2   

conv2d_2  24x24 3  ReLU 64 

conv2d_3  24x24 3  ReLU 64 

max_pooling  12x12  2   

conv2d_4 12x12 3  ReLU 128 

dropout      

conv2d_5  12x12 3  ReLU 128 

up_sampling  24x24  2   

conv2d_6  24x24 3  ReLU 64 

up_sampling  48x48  2   

conv2d_7  48x48 3  ReLU 32 

conv2d_8  48x48 3  ReLU 3 

dropout_2  48x48     

 

Table 2.9. The overview of the tail of the generator which combines the two heads.  

Layer  Output Shape Kernel 
size 

Strids Activation 
function 

Filters 

concatenate_1 48x48    6 

flatten_1 13824    13824 

dense_1 10   ReLU 10 
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dense_2 36864   ReLU 36864 

reshape_1  12x12    256 

conv2d_1 12x12 3  ReLU 512 

up_sampling  24x24     

conv2d_2 24x24 3  ReLU 256 

dropout       

conv2d_3  24x24 3  ReLU 256 

up_sampling  48x48     

conv2d_4 48x48 3  ReLU 64 

dropout       

conv2d_5  48x48 1  Tanh 6 

 

The Table 2.8, shows the overall structure of the generator. In total there are 42 layers including the 
input and output. The network used a 3x3 kernel for feature extraction and max pooling to reduce the 
shape of the features and upsampling to reconstruct them. In addition, L2 [37] and dropout [38] 
regularisation methods have been used throughout the network. Likewise, the ReLU activation function 
has been used except the last layer where the tanh function was used instead. The generator receives 
as input a 48x48x3 GPS map and 48x48x6 traffic signs (two different traffic signs stacked in channel 
dimension) and outputs 48x48x6 meta traffic signs. The 6D output is split into two parts (2 images of 
size 48x48x3) aiming to extra the two types of meta traffic signs (see Figure 2.11). 

 

2.2.3.3 Training  

The Deep Learning model was trained and evaluated on the NVIDIA GTX 2080Ti GPU using Keras-
Tensorflow framework. The data were pre-processed before the training phase, such as resizing the 
GPS map and the traffic signs to an appropriate image resolution. During the training phase, additional 
data augmentation techniques were used. Table 2.10 shows all the augmentation methods that were 
used during the training phase. 

 

Table 2.10. All the augmentation methods that were applied on the training data for the 
anomaly detection model. 

Type Parameters Description 

Rotation range 0 - 20 degrees  The training image i.e., GPS map is randomly 
rotated between 0 - 20 degrees.  
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Zoom range 0 - 40 percent  Zooming is applied on the training images by a 
random scaling factor in the range of 0 - 40 
percent. 

Width and height shift 
range 

 

0 - 10 percent The images are shifted left, right, up or down in 
random combinations and magnitudes in the 
range of 0 - 10 percent.  

Shear  0 - 10 percent The images are stretched randomly in the 
range of 0 - 10 percent. 

Fill  Nearest mode Missing pixel values are filled with nearby pixel 
values.  

Horizontal and Vertical 
Flip 

True The images are flipped in a horizontal and 
vertical direction randomly. Only used for the 
GPS map 

 

2.2.4 Validation of Methods 

To validate the anomaly detection model, a test dataset was generated where 50% of data were 
normal and remaining abnormal. A total of 108 sequences of GPS maps and traffic signs were 
used for the model evaluation. The Mean Square Error (MSE) was selected to calculate the 
reconstruction errors. The threshold value was retrieved from the 50% quantile of reconstruction 
error. The value was then used to validate the performance of anomaly detection.  

 

Table 2.11. The performance of the model with the threshold value of 0.09572. 

Data Type Precision Recall  f1-score   Samples 

Normal 0.82 0.78 0.80 54 

Anomaly 0.79 0.83 0.81 54 

Model Accuracy 0.81 108 

 

Table 2.11 shows the performance of the anomaly detection model. The threshold value of 0.09572 

produced the best performance of the model achieving 0.80 and 0.81 F1-score for normal and 

abnormal data respectively. 
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3 Sensor Fusion Solutions for Detecting GPS Location 

Spoofing Attacks 

3.1 Relevance to Attack Scenarios 

The security and intact operation of GPS sensor, is a crucial factor of the feasibility of VANET. Relying 
on GPS measurements and aided by a precise high definition map, vehicles can choose an optimized, 
shortest path from one location to another location. This is essential for vehicles to work correctly and 
autonomously without the assistance of human drivers [39]. However, as shown in [40][41][42], GPS is 
susceptible to attacks, such as jamming and spoofing. Jamming aims to fully block GPS operation by 
launching disruptive signals with the same frequencies as those of GPS. The more prominent threat of 
GPS spoofing is related to deceiving the user by the transmission of signals with the same 
characteristics of legitimate GPS satellite signals. There are multiple ways and resources (open source) 
available for spoofing, that pose a critical threat to GPS. Therefore, there is a great concern over the 
security and safety aspects. After encountering few unexpected and unprecedented attacks over the 
GPS sensors several research and studies are opening the ways as how these sensor systems can be 
made secured and risk free. Initially commercially available off the shelf receivers were used to study 
about the possible threats [43] which were not given much of a concern. The study [43] also gave an 
insight on topics such as GPS and speculations about the intended use, an alternative navigation 
system which can be used apart from GPS and the significant points which should be considered to 
have a secured and safe communication. 

GPS vulnerability to spoofing can be seen on three distinctive levels: 

1. Vulnerability in signal processing: The type of GPS signals (e.g. modulation type, transmit 
frequency, etc.) is publicly known. An attacker can generate signals with similar 
characteristics to the true ones and deceive the user. 

2. Vulnerability in data bit level: Framing structure like satellite ephemeris and clock is also 
known and does not change rapidly. As such, the attacker can also exploit that information 
to generate deceiving signals. 

3. Vulnerability in Navigation and Position Solution: The attacker can inject counterfeit pseudo 
range measurement and lead to wrong position, velocity, and time solution for the legitimate 
GPS receiver. 

An advanced attacking strategy requires the attacker to be patient [44][45][46]. To launch an attack 
toward a legitimate receiver, the disruptive signals of the attacker should synchronize on the signals 
from the satellite. After synchronization, the attacker increases the power of signals, which makes the 
victim’s GPS lock on spurious signals. Then, the attacker can manipulate the position of the victim by 
changing spurious signals. GPS spoofing techniques include Lift-off-delay, Lift-off-aligned, Meaconing 
or Replay, Jam and Spoof, Trajectory spoofing, etc. Techniques that try to defend against spoofing are 
based on Signal Power Monitoring, Signal Arrival Characteristics, Signal Correlation Peak, Antenna 
Array and Multi-Sensor Fusion. The latter defence approach fits with the rationale of Cooperative 
Localization in VANET. The nodes of the network collaborate between themselves, exchange 
measurements and aim not only to improve location accuracy but also, to detect and mitigate possible 
location attacks. 

3.2 Fusing in-vehicle measurements for detecting location 
spoofing attacks 

3.2.1 Sensors and Measurements 

When the safety and security related issues are discussed for the vehicle, monitoring the vehicle’s 
location information or tracking the vehicles position is important. Likewise, the safety and security 
pertaining to the sensors involved in this scenario is of high importance. The machine learning algorithm 
which would be addressing these topics such as to detect the abnormalities with the sensor inputs and 
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mitigate the attacks relies on two aspects. The initial GPS sensor inputs which would be fed to the 
vehicle to navigate and then the vehicle parameters which are coming from the other relevant sensors 
in the vehicle. From GPS sensors the measurements related to the location calculation and number of 
satellites are considered as the important parameters. Since, the whole idea of the machine learning 
algorithm is to address the spoofing attack detection, as an alternate technique to calculate the position 
or location information, vehicle parameters like acceleration, yaw rate, velocity, etc., are considered. 
From start of the vehicle to until it reaches the desired destination GPS sensor measurements are being 
monitored for the spoofing attack. Parallelly, the vehicle parameters are considered, and the deviation 
pertaining to the position is evaluated. If the deviation is above a certain threshold then the GPS sensor 
measurements would no longer be considered for the navigation but vehicle parameters and other 
alternate techniques by using LiDAR, camera sensors would be used. More specific, the sensors and 
measurements used for this in-vehicle GPS location spoofing detection is listed below: 

 Speed [m/s]; (rotation speed of vehicle). 

 Compass [deg]; (direction based North and South magnetic poles of the Earth). 

 GNSS; (vehicle position: Lat, Long, Altitude and Time information). 

 Steering angle sensor [deg]; (Steering angle of the vehicle). 

 IMU sensor; (includes Gyroscope [rad/s] and Accelerometer [m/s2]) 

3.2.2 Methodology Description 

Connected and Autonomous Vehicle (CAV) technology advancements led to the need for an accurate 
and robust localization system. However, due to satellite signal jamming and location spoofing attacks, 
the Vehicle-to-Vehicle/Infrastructure (V2V/V2I) communication and navigation disruptions are 
becoming a significant obstacle to CAV's operation. Many solutions to this problem have been proposed 
e.g. Galileo anti-spoofing service on the civil GNSS signal known as Open Service Navigation Message 
Authentication (OS-NMA), which enables the authentication of the navigation data. However, despite 
anticipation, no integrated circuit designs for OS-NMA on E1 frequency have been released to date and 
some experts question the usefulness of such solution if receivers can deliver anti-spoofing protection 
based on inertial sensors or signal processing [47]. 

In this section, the methodology of GPS spoofing attack detection will be analyzed and discussed. The 
framework of the attack identification based on in-vehicle GPS location integrity check, is illustrated in 
Figure 3.1. The CARAMEL system is able to compute a parallel GPS-free location stream using a 
fallback location solution based on Bayesian filtering which consists of two main steps namely (i) the 
prediction step and (ii) the update step. In the prediction step, by means of the on-board sensors through 
the vehicle’s Controller Area Network (CAN) bus data and specifically the steering angle (α), the yaw 
rate (φ) and the wheel speed (υ), the system is able to predict the future location of the vehicle within a 
timestep δt.  

In the update step, an Extended Kalman Filter (EKF) approach is applied to fuse the predicted vehicle’s 
location with a GPS-free global location measurement. In our case, the GPS-free global location 
measurements are obtained through Signals of Opportunity (SoO), where the global location of the 
vehicle can be estimated with some uncertainty. More details about the SoO will be discussed in the 
Section 3.2.2.2. To identify a possible GPS location spoofing attack, the vehicle’s location obtained 
through the fallback solution is compared with the current GPS measurement in the final comparison 
step (iii), as shown in Figure 3.1.  
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Figure 3.1. In-vehicle GPS location integrity check. 

For the prediction step, using the sensor information data, it is possible to build a non-linear model of 
the vehicle system state following the underlying physical laws. As described in the deliverable D2.1 
section 3.4.1, such a non-linear model exploits the assumption that the motion of the vehicle can be 
well approximated by a bicycle. If the body-frame of the vehicle is considered oriented as the x-axis, 
the one-step prediction of the location and the speed of the vehicle in its body-frame reference systems 
is: 

(
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where 𝑙𝑓 and 𝑙𝑟 represent the distance of the front wheel and the rear wheel from the mass barycenter, 

respectively, M is the mass of the vehicle, and 𝐶𝑓 and 𝐶𝑟 represent the corner stiffness of the front and 

rear wheels, respectively. Applying a simple coordinate transformation, the one-step prediction in the 
global geographic reference system can be obtained as:  
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Under the assumption of uncorrelated and Gaussian measurement noise, the associated covariance of 
the estimated vehicle's system state is computed using the EKF approach. 

 

3.2.2.1.1 Comparison Step 

 

The attack detection is performed in the comparison step, as shown in the Figure 3.1. This attack 
detection mechanism takes as inputs the output of the estimated location, from the fallback solution and 
the current GPS location. First, we define the deviation of these two locations as the Euclidean distance 
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of the two vectors 𝑒𝑑 = ||𝑥 − �̂�||  where 𝑥  and 𝑥 , are the GPS location and the estimated location 

respectively. An indication of a potential attack occurs when the distance 𝑒𝑑 exceeds a predetermined 

threshold 𝑇𝑑. The choice of the threshold value, is done by following an empirical approach where, an 
attack-free time period is assumed with the vehicle moving. At each time-step a set of 𝑛 locations �̂�𝑖 
and 𝑥𝑖 is collected where 𝑖 = 1,… , 𝑛 denotes the location samples. Figure 3.2(a) depicts the distance 

𝑒𝑑 for 𝑛 = 30. The choice of the 𝑇𝑑 cannot be arbitrary since there is a performance trade-off regarding 
the correct and false detection rates in the presence of attacks. For example, by setting a relatively low 
threshold value, our solution would probably detect the majority of the potential attacks; however, the 
false alarm rate will be high and as a result, the proposed solution be ineffective. On the other hand, by 
setting a relatively high threshold value (e.g., 𝑇𝑑 =  𝑚𝑎𝑥(𝑒𝑑 , 𝑖), 𝑖 = 1, … , 𝑛), the high false alarm rate can 

be addressed, but at the expense of misdetections that will increase. In our solution, we select the 𝑇𝑑 
as the 𝑎𝑡ℎ  percentile of 𝑒𝑑  distance errors, chosen from the cumulative distribution function of the 

distance 𝑒𝑑, which is depicted in Figure 3.2(b). Furthermore, a way to decrease the uncertainty on the 

decision level, the use of a sliding window can be applied. A sliding window of length 𝑤 can be used for 
a more robust decision based on the majority vote approach. Therefore, a GPS location attack detection 
can be performed using a set of detection estimates of a size defined by the sliding window length 𝑤. 

Alternatively, the comparison step can be performed in a different manner by exploiting the fact that a 
GPS receiver not only provides an approximated location for the vehicle, but also an uncertainty score 
that can be transformed into a covariance matrix. Based on that and under the assumption of Gaussian 
distribution for the GPS measurements, the two locations can be compared using the Bhattacharyya 
distance. Essentially the Bhattacharyya distance computes the amount of overlap of two statistical 
distribution, hence, measuring their similarity. Assuming the vehicle’s location estimation and the 
corresponding covariance matrix as [𝜇𝑥, 𝜇𝑦] and Σ𝑥,𝑦 and the GPS location and covariance matrix as 

[𝜇𝑥
𝐺 , 𝜇𝑦

𝐺] and Σ𝑥,𝑦
G , the Bhattacharyya distance for each time slot 𝑘 can be computed as: 
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where μ[n] = ( μx[n],  μy[n] ) − ( μx
G[n], μy

G [n] ), and the Bhattacharyya distance is averaged over the 

samples collected inside a sliding window of W seconds. The sliding window mechanism allows 
reducing the number of false alarm due to spurious GPS measurement errors. Nevertheless, the trade-
off between the length of the sliding window and the ability of the described attack detection mechanism 
to react to a GPS spoofing attack has to be considered when setting W. 

 

Figure 3.2. a) Deviation between a vehicle's estimated and GPS location. b) The cumulative 
distribution function of ed. 

3.2.2.2 Signals of Opportunity 

The current navigation systems are fundamentally relying on GNSS for localization purposes. However, 
GNSS signals frequently become unavailable in the presence of jamming or spoofing attacks [48][49], 
pointing to the exploration of SoO as an alternative method for positioning [50]. Specifically, in [51], a 
novel Relative Positioning System (RPS) is introduced, requiring no information about the transmitters’ 
location or any GNSS signal knowledge, that localizes the moving vehicle accurately and uses the SoO 
dataset in an EKF solution. 

Figure 3.3(a) depicts the components of RPS, where a software-defined radio (SDR) receiver is applied 
on a moving vehicle gathering SoOs. The assumption is that there are several relative SoO transmitters 
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in the vehicle's area, with their locations initially unknown. Also, the vehicle's position evolves following 
a known discretized model, where 𝐅 is defined as the system dynamics and 𝐰 the process noise. 

 

 

Figure 3.3. (a) System model [51]. (b) Sample of RSS measurements for the 0-3000 MHz 
frequency spectrum. 

Initially, the physical distance between the transmitters sensed in the environment (e.g., radio, TV, Wi-
Fi, LTE) and the CAV is computed using a log-normal signal propagation model.  

 

𝑃𝐿 = 𝑃𝑇𝑑𝐵𝑚−  𝑃𝑅𝑑𝐵𝑚 

𝑃𝐿 = 𝑃𝐿0 − 10𝑛𝑃𝐿 𝑙𝑜𝑔10 (
𝑑

𝑑0
) + 𝑋𝐺  

 

where, 𝑃𝑇𝑑𝐵𝑚  and 𝑃𝑅𝑑𝐵𝑚  are the transmit and receive powers in dBm and 𝑃𝐿  is the total path loss. 𝑃𝐿0  is 

the RSS at a reference distance 𝑑0  and 𝑛𝑃𝐿 is the path loss exponent. 𝑋𝐺   is defined as the log-normal 
shadowing term and is modelled as a normal Gaussian variable with zero mean. 

 

𝑃𝐿0 = 20 𝑙𝑜𝑔10(𝑑) + 20𝑙𝑜𝑔10(𝑓𝑐) − 27.55 

 

The log-distance path loss model is defined as: 

 

𝑑 = 𝑑010
𝑃𝐿0 − 𝑃𝐿
10𝑛𝑃𝐿

 

 

The distance is necessary to estimate the vehicle's position, employing a multilateration method and 
using the estimated transmitters' location prior to GNSS information loss. Multilateration is a 
conventional method to calculate a receiver node's unknown location, as discussed in [51][52]. For this 
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method, it is assumed that each node transmits the information in a circle around itself. The radius of 
the circle is the distance to the receiver node, and the unknown node's position can be found at the 
intersection of these circles. As the distances are computed, using the log-normal model, an 
overdetermined system is created. Subtracting one equation from the others leads to the system 
linearization, which can be solved by employing the least-squares (LSQ) method. 

 

                   𝑨 = 2 [
(𝑥1 − 𝑥2) (𝑦1 − 𝑦2)

… …
(𝑥1 − 𝑥𝑛) (𝑦1 − 𝑦𝑛)

],  𝒃 = [
𝑥1
2 − 𝑥2

2 + 𝑦1
2 − 𝑦2

2 + 𝑑2
2 − 𝑑1

2

𝑥1
2 − 𝑥𝑛

2 + 𝑦1
2 − 𝑦𝑛

2 + 𝑑𝑛
2 − 𝑑1

2],     𝒙𝒌 = [ 
𝑥
𝑦 ] 

 

Subsequently, the best-approximated solution is computed, employing the following equations: 

 

𝑒 = 𝑨𝒙𝒌 − 𝒃 

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑘𝑒 

𝒙∗ = (𝑨𝑻𝑨)−𝟏(𝑨𝑻𝒃) 

 

Finally, an EKF is then applied in a multimodal fusion approach to derive the vehicle’s location 𝒙 and 
the measured vehicle system state at time 𝑘. At first, the vehicle’s position at time 𝑘 + 1 is computed, 
following a vehicle motion model [53]. Afterwards, the predicted position is updated with the estimated 
SoO-based position to obtain, at each timestamp, the GPS-free vehicle’s location 𝒙.  

�̂�𝒌+𝟏 = 𝑭�̂�𝒌𝑭
𝑻 + 𝑸 

𝑲 = �̂�𝒌+𝟏𝑯
𝑻(𝑯�̂�𝒌+𝟏𝑯

𝑻 + 𝑹)−𝟏 

𝒙𝒌+𝟏 = 𝒙𝒌 + 𝑲(𝒛𝒌+𝟏 −𝑯𝒙𝒌+𝟏) 

�̂�+ = (𝑰 − 𝑲𝑯)�̂�𝒌+𝟏 

 

where error covariance estimate is defined as �̂�𝒌+𝟏 , the Kalman gain is denoted as 𝑲 and the next 

error covariance matrix is �̂�+ . The next state is 𝒙𝒌+𝟏  while 𝒛𝒌+𝟏  denotes the relative (SoO-based) 
measurements. 𝑯 is the measurement matrix, 𝑹 is the matrix consisting of the variances of the process 
noise vector, and Q is the covariance matrix of the observation noise.  

 

Figure 3.4. Block diagram of the Relative Position System [51]. 
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3.2.3 Validation of Methods 

3.2.3.1 Preliminary results based on drone data 

 

Experiments utilizing real GPS location data were conducted, for the proposed solution validation. A 
drone is set to follow a predefined path as shown in Figure 3.5 (red line). The drone equipped with a 
GPS receiver is able to provide real GPS location measurements along its flight journey. For the fallback 
solution, one broadband antenna was mounted on an SDR module on the drone to acquire SoOs over 
a large frequency spectrum (via HackRF-one SDR) [54]. The spoofing attack is simulated by adding 

Gaussian noise 𝒘 on the GPS measurements with 𝝁 = [𝟐𝟎𝒎 𝟐𝟎𝒎] and 𝚺 = 𝝈𝟐𝑰 where 𝜎 = 3𝑚. The 

first scenario is emulated for the attack to start on the second half of the simulation time (i.e., 𝑛 ∈
[16,30]) whereas, for the second scenario, subsets of GPS locations were attacked (i.e., 𝑛 < 6, 𝑛 >
26).  

 

Figure 3.5. Drone trajectory of spoofed (blue), estimated (yellow), and original GPS (red) 
locations. (a) Scenario with second half of the GPS locations altered and (b) Scenario with a 

subset of GPS locations (5 at the start and 5 at the end of the trajectory) altered. 

The performance assessment is conducted by observing a number of metrics, namely Detection Rate 
(DR), Misdetection Rate (MR), and False Detection Rate (FDR), defined as: 

 

 𝐷𝑅 =
# 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

# 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
, 𝑀𝑅 =

# 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑚𝑖𝑠𝑠𝑒𝑑

# 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
, 𝐹𝐷𝑅 =

# 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

# 𝑜𝑓 𝑛𝑜𝑛 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
. 

 

Two different values are chosen for the threshold 𝑇𝑑 from the CDF function in Figure 3.2(b). One at the 
90-th percentile (𝑇𝑑 = 32𝑚) and one at the 60-th percentile (𝑇𝑑 = 22𝑚) , for the first and second 

scenario respectively.Figure 3.6, shows the performance of this approach. In Figure 3.6(a), the 𝐷𝑅 

reaches up to 90% with 𝑀𝑅 = 10% and 𝐹𝐷𝑅 = 15% whereas, by setting a lower threshold as shown in 

Figure 3.6(b), 𝐷𝑅 tops 100% but in the expense of the increase of 𝐹𝐷𝑅 up to 45%. Therefore, a proper 
choice of the threshold 𝑇𝑑 must be considered for optimum performance. 

 

 

Figure 3.6. Performance evaluation in terms of the DR, MR, and FDR metrics. (a) Using the 90-
th percentile of ed as the detection threshold and (b) Using the 60-th percentile of ed as the 

detection threshold. 
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3.2.3.2 Bhattacharyya Distance in CARLA Simulator 

 

To assess the performance of the detection algorithm utilizing the Bhattacharyya distance, the 
described mechanism has been implemented in CARLA simulator [55]. In Figure 3.7(a), one can see 
the ground truth trajectory of the vehicle as well as the fallback solution estimator where, the SoO 
measurements are simulated as the ground truth locations with a very large variance, i.e., 

𝑁(0, diag(225 𝑚2, 225 𝑚2)) and finally the associated GPS measurements received by the vehicle 

(distributed as a  𝑁(0, diag(9 𝑚2, 9 𝑚2))  ) . The malicious attack takes place after the first half of the 
simulation, by introducing a constant bias of 15𝑚 on the GPS measurements.Figure 3.7(b), shows the 
output of the detection scheme. As expected, the instantaneous Bhattacharyya distance presents high 
variability, which increases the uncertainty of the reliable detection. However, the average 
Bhattacharyya distance, with a window length of 𝑊 = 4𝑠 provides a smoother output. By choosing the 
threshold value at the 99-th percentile of the Bhattacharyya distance under an attack-free environment, 
the proposed solution is able to detect up to 97% of the attacks. A more detailed analysis about the 
impact of the window and the window length will be discussed in the Deliverable D5.2. 

 

 

Figure 3.7. Example of a GPS spoofing attack and real-time detection in CARLA simulator. 

 

3.2.3.3 CARLA Simulator Extensive Results 

 

In this section, simulation data from CARLA simulator are used to assess the performance of the 
proposed detection algorithm. Three different trajectories are considered for this analysis which are 
depicted in Figure 3.8. The performance assessment is based on the output DR, MR, FDR rates for 
different values of the attack bias in the GPS measurement introduced by the attacker as well as, on 
the standard deviation (STD) of SoO measurements. 
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Figure 3.8. Vehicle Trajectories. 

Three different values are considered for both STD of SoO and attack bias as shown in Table 3.1, which 
also includes all relevant parameters of the simulation. The threshold value is set on the 95 percentile 
of the Euclidean distance based on an attack-free scenario. Results using the sliding window approach 
are also included in the analysis. 

 

Table 3.1. Simulation Parameters. 

Parameter Name Units Value 

Standard Deviation of Signals of Opportunity [m] [10, 15, 20] 

Standard Deviation of Signals of Opportunity 
Orientation 

[degrees] 20 

Standard Deviation of GPS [m] 3  

Attack Bias in the GPS Measurement [m] [5, 9, 12]  

Percentile to Select Threshold Value % 95 

Size of Sliding Window - 5 

 

For the first simulation scenario, the STD of SoO is set to 10𝑚 and the performance is assessed for all 
three attack bias values (see Table 3.1). Figure 3.9 shows, the estimated locations using SoO, the 
fallback solution and the ECDF of the error in the attack-free scenario. The attack is performed on the 
half simulation time instances in a consecutive way as illustrated in Figure 3.10. The DR, MR and FDR 
output values are shown in Figure 3.11.  

As shown in the results, the overall performance of this method is highly depended on the attack bias 
values, whereas the algorithm does not perform well for small attack bias. More specific, for GPS attack 
bias of 5𝑚, the detection rate of the algorithm drops down to 10%. Furthermore, the impact of the sliding 
window is clearly shown in Figure 3.11(b), where DR is slightly enhanced. The proposed method can 
achieve more than 90% of DR for high attack bias with low MD rates less than 10%.  
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Figure 3.9. (a) SoO location estimation (b) Estimated Location using fall-back solution (c) 
ECDF of Error in the attack-free Scenario; Td @ 95%. 

 

Figure 3.10. Attack scenario (a) Bias of 5m (b) Bias of 9m (c) Bias of 12m. 
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Figure 3.11. Performance Evaluation (a) Without sliding window (b) Using sliding window. 

The same simulation procedure is conducted in the second scenario where the STD of SoO is increased 
to 15𝑚 and a different vehicle trajectory is chosen. Figure 3.12 shows, the estimated locations using 
SoO, the fallback solution and the ECDF of the error in the attack-free scenario and the attack is 
performed on the half simulation time instances in a consecutive way. The DR, MR and FDR output 
values are shown in Figure 3.13. Similarly, the resulting DR stays low for small attack bias, with 
maximum performance of 90% of DR for attack bias of 12𝑚 using sliding window. The increase of the 
uncertainty in SoO measurements also affected the performance where lower DR achieved for all GPS 
attack bias values. However, DR can be enhanced by varying the comparison threshold accordingly 
but with the cost of increasing the FDR.  
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Figure 3.12. (a) SoO location estimation (b) Estimated Location using fall-back solution (c) 
ECDF of Error in the attack-free Scenario; Td @ 95%. 

 

Figure 3.13. Performance Evaluation (a) Without sliding window (b) Using sliding window. 

In the final scenario, the impact of the uncertainty of SoO measurements is assessed. Using the final 
trajectory, the simulation is conducted by fixing the GPS attack bias at 9𝑚 and the output results are 
extracted by varying the STD of SoO. The attack scenario is applied in the same manner as in the 
previous scenarios as shown in Figure 3.14. 
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Figure 3.14. Attack scenario, Attack bias 9m. 

 

Figure 3.15. Performance Evaluation (a) Without sliding window (b) Using sliding window. 
Attack bias fixed @ 9m 

Figure 3.15 shows the DR, MR and FDR for different STD of SoO. As expected, the increase in the 

uncertainty of SoO measurements reduces the DR of the algorithm and also increases the FDR. The 

use of a sliding window slightly improves both DR and FDR achieving DR up to 99% and FDR down 

to 5%. 

 

3.3 Multi modal fusion between vehicles for detection location 
spoofing attacks 

3.3.1 Sensors and Measurements 

As it has been extensively reported in [56], the GPS sensor, originally developed in the USA, is widely 
known as an example of Global Navigation Satellite System (GNSS). Other types of GNSS include 
GLONASS (Russia), Galileo (European Union) and BeiDou (China). The group of satellites assigned 
to each GNSS, is termed constellation. The principal messages transmitted by each system include: 

1. Position, velocity and timing (PVT) signal information 
2. Ephemeris data, i.e. exact location of operating satellites 
3. Almanac, i.e. location and orbit of all constellation’s satellites, along with status information. 

The interoperability allows GNSS receivers to read signals from the four main satellite constellations 
and so avoid blackouts in urban canyons or other areas of poor reception by taking into consideration 
satellites from other constellations that may be visible. All types of GNSS satellites transmit on at least 
two bands: using the predominant GPS terminology, on frequency L1 an encrypted military code, called 
P(Y), and an unencrypted civilian code, called C/A, while on the L2 band the P(Y) code is repeated.  
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At the lowest level a GNSS navigation signal can be seen as an analog sinusoidal wave at a frequency 
that varies roughly between 1.2 and 1.6 GHz. In order to carry digital information, segments of this basic 
signal are phase-shifted, in the case of GPS or GLONASS L1 by radians. The usual method is BPSK 
(binary phase shift keying), which encodes 1 bit per phase-shift. Other variations are QPSK (quad 
phase), which uses four phase shifts to encode 2 bits per shift, as used in Beidou-2, and MBOC 
(multiplexed binary offset carrier), as used in Galileo E1, which is designed to interoperate with the 
existing GPS L1 signal. 

The calculations performed by a GNSS receiver to compensate for various forms of signal delay, such 
as relativistic effects or tropospheric delay, end up as corrections to the difference between the time 
stamped on the packet and the time it was received, but do not affect the basic nature of the position 
calculation. When a GNSS receiver reads a time and location signal from a single satellite, it cannot 
compute the actual range because its local clock will be offset from the satellite clock by an unknown 
amount. Therefore, it employs the so-called pseudo-ranges pi for four satellites, representing four non-
linear equations with four unknowns (the x, y, z coordinates of the receiver and time offset ΔT). These 
equations correspond to three hyperboloids, whose intersection, or simultaneous solution, is the 
location of the receiver. 

Finally, it is assumed that range sensors like Camera or LIDAR, which are capable of providing 
measurements like relative distances and angles between neighbouring vehicles, are utilized for the 
derivation of our defense mechanism against GPS spoofing. 

3.3.2 Methodology Description 

The proposed collaborative GPS spoofing defence mechanism relies on multi-modal sensor fusion 
among the vehicles of a VANET. It is assumed that an attacker compromises and spoofs the GPS of a 
subset of VANET. However, by means of cooperation and measurements exchange (V2V 
communication), the vehicles manage to achieve three major tasks: 1) estimate quite accurately their 
locations, regardless if they were attacked, 2) estimate the possible impact on actual GPS measurement 
in the form of position outliers, 3) high classification accuracy of vehicles as spoofed or non-spoofed. 
The two first goals are related to the mitigation stage of our defence mechanism, while at the 
classification stage actually we detect which vehicles were spoofed. Although the first stage of the 
mechanism is described on the deliverable D4.4: Report on the Fallback Actions for Minimal Risk 
Condition of CARAMEL, we will review it again since it serves as input to the detection phase.  

Consider a 2-D region where 𝑁 connected vehicles collect measurements while moving. An example 

of such a VANET, is shown in Figure 3.16. The location of the 𝑖-th vehicle at 𝑘-th time instant is given 

by 𝒙𝒊
(𝒌)

 = [𝑥𝑖
(𝑘) 𝑦𝑖

(𝑘) ]
𝑇
.  

Each vehicle knows its absolute position from GPS and measures its relative distances and angles with 

respect to neighbouring vehicles using LIDAR or Camera. The true relative distance 𝑧𝑑,𝑖𝑗
(𝑘)

 between 

connected vehicles 𝑖 and 𝑗 is given by 𝑧𝑑,𝑖𝑗
(𝑘)

 = ‖𝑥𝑖
(𝑘) − 𝑥𝑗

(𝑘)‖, where ‖ ⋅ ‖ is the 𝑙2 norm. The true angle 

𝑧𝑎,𝑖𝑗
(𝑘)

 between neighbouring vehicles 𝑖 and 𝑗 is given by 𝑧𝑎,𝑖𝑗
(𝑘)

 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦𝑗
(𝑘)
−𝑦𝑖

(𝑘)

𝑥𝑗
(𝑘)
−𝑥𝑖

(𝑘) .  

The acquired measurements are assumed to be described by the following models: 

● Relative distance measurement: �̃�𝑑,𝑖𝑗
  (𝑘)

 = 𝑧𝑑,𝑖𝑗
(𝑘)

 + 𝑤𝑑
(𝑘)

,   𝑤𝑑
(𝑘) ∼ 𝑁(0, 𝜎𝑑

2)     (1) 

● Relative angle measurement: �̃�𝑎,𝑖𝑗
  (𝑘)

 = 𝑧𝑎,𝑖𝑗
(𝑘)

 + 𝑤𝑎
(𝑘)

,   𝑤𝛼
(𝑘) ∼ 𝑁(0, 𝜎𝑎

2)     (2) 

● Relative azimuth angle measurement: �̃�𝑎𝑧,𝑖𝑗
  (𝑘)  = 𝜆𝜋 +  𝑎𝑟𝑐𝑡𝑎𝑛

|𝑥𝑗
(𝑘)
 − 𝑥𝑖

(𝑘)
|

|𝑦
𝑗
(𝑘)
 − 𝑦

𝑖
(𝑘)
|
 +  𝑤𝑎𝑧

(𝑘)
, 𝜆 = 0,1  𝑜𝑟  �̃�𝑎𝑧,𝑖𝑗

  (𝑘)  =

  𝜆𝜋 +  𝑎𝑟𝑐𝑡𝑎𝑛
|𝑦𝑗
(𝑘)
 − 𝑦𝑖

(𝑘)
|

|𝑥
𝑗
(𝑘)
 − 𝑥

𝑖
(𝑘)
|
 +  𝑤𝑎𝑧

(𝑘)
, 𝜆 =  

1

2
,
3

2
, 𝑤𝑎𝑧

(𝑘)
  𝑁(0, 𝜎𝑎𝑧

2 )     (3) 

● Absolute position measurement: 

                                   �̃�𝑝,𝑖
  (𝑘)

 = 𝑥𝑖
(𝑘)

 + 𝑤𝑝
(𝑘)

,   𝑤𝑝
(𝑘) ∼ 𝑁(0, 𝛴𝑝)                                   (4) 
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Covariance matrix 𝛴𝑝 is a diagonal matrix equal to diag (𝜎𝑥
2, 𝜎𝑦

2).  

 

 

Figure 3.16. VANET 

A typical approach in the area of CL is to formulate an objective cost function 𝐶(𝑥) according to 
Maximum Likelihood Estimation (MLE) criterion [57],[58] and to minimize it with respect to locations 𝑥𝑖 
in order to reduce the error of absolute position measurement. The likelihood function of the 
measurement models can be written as: 

𝐿(𝑥) = ∏ 𝑃 (𝑥𝑖
(𝑘), 𝑥𝑗

(𝑘))𝑖∈𝑁,𝑗∈𝑁(𝑖) ∏ 𝑃 (𝑥𝑖
(𝑘), 𝑥𝑗

(𝑘))𝑖∈𝑁,𝑗∈𝑁(𝑖) ∏ 𝑃 (𝑥𝑖
(𝑘))𝑖∈𝑁                      (5) 

, where 𝑁(𝑖) denotes the set of neighbours of the 𝑖-th vehicle and 𝑃(⋅) are the probability density 
functions of the measurement models. If we take the logarithm of (5), then the objective cost function 
(same as in [58] and similar to that of [57]) is given by:  

𝐶(𝑥𝑘) = ∑ (�̃�𝑑,𝑖𝑗
  (𝑘) − 𝑧𝑑,𝑖𝑗

(𝑘))
2
/2𝜎𝑑

2
𝑖∈𝑁,𝑗∈𝑁(𝑖)    + ∑ (�̃�𝑎,𝑖𝑗

  (𝑘) − 𝑧𝑎,𝑖𝑗
(𝑘))

2
/2𝜎𝑎

2
𝑖∈𝑁,𝑗∈𝑁(𝑖)   +

∑
1

2
 [(�̃�𝑝,𝑖

  𝑥,(𝑘) − 𝑥𝑖
(𝑘))

2
/𝜎𝑥

2 + (�̃�𝑝,𝑖
  𝑦,(𝑘)

− 𝑦𝑖
(𝑘))

2
/𝜎𝑦

2 𝑖∈𝑁 ]           (6) 

The GPS spoofing attack impacts on the absolute position measurement that is provided to vehicles. It 

may result in dozens, hundreds or even thousands of meters away from the true location. Let 𝑂𝑖
(𝑘)
 =

 [𝑜𝑖
𝑥,(𝑘)

 𝑜𝑖
𝑦,(𝑘)

 ]  ∈  𝑅𝑁 × 2 be the unknown matrix of outliers to the true 𝑥 and 𝑦 locations of vehicles, which 

models the spoofing attack. Our main goal is to retrieve that impact and to substitute it from cooperative 
locations estimation approach. The spoofed absolute position measurement is now provided by the 
following model: 

● Spoofed absolute position measurement: 𝑧𝑝,𝑖
(𝑘)

 = �̃�𝑝,𝑖
  (𝑘)

 + 𝑂𝑖
(𝑘)

     (7) 

The main hypothesis of the robust cooperative localization solutions that will be developed, relies on 
the fact that only a small number of 20-25% of VANET’s vehicles can be compromised. That property 
facilitates the exploitation of 𝑙1norm minimization approaches [57], since the outliers matrix is actually 
sparse, because it corresponds to the vehicles being spoofed. The new cost function, based on MLE 
criterion and the sparsity properties of outliers matrix, can be formulated according to (8): 
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 𝐶(𝑥𝑘) = ∑ (�̃�𝑑,𝑖𝑗
 (𝑘)

− 𝑧𝑑,𝑖𝑗
(𝑘)
)
2
/2𝜎𝑑

2  𝑖∈𝑁,𝑗∈𝑁(𝑖)  + ∑ (�̃�𝑎,𝑖𝑗
  (𝑘)

− 𝑧𝑎,𝑖𝑗
(𝑘)
)
2
/2𝜎𝑎

2
𝑖∈𝑁,𝑗∈𝑁(𝑖)   + ∑

1

2
 [(�̂�𝑝,𝑖

𝑥,(𝑘)
−𝑖∈𝑁

𝑜𝑖
𝑥,(𝑘)

− 𝑥𝑖
(𝑘)
)
2
/𝜎𝑥

2  +  (�̂�𝑝,𝑖
𝑦,(𝑘)

− 𝑜𝑖
𝑦,(𝑘)

− 𝑦𝑖
(𝑘)
)
2
/𝜎𝑦

2 ]  + 𝜆1‖𝑜
𝑥,(𝑘)‖1 + 𝜆2‖𝑜

𝑦,(𝑘)‖1 (8) 

 

, where ‖ ⋅ ‖1 is the 𝑙1 norm. The interior point methods provided by CVX software can be applied in 
order to minimize the cost function. We named this approach as Robust Traditional Cooperative 
Localization based on MLE (RTCL-MLE).  

An alternative approach is to treat the VANET as an undirected graph, using the connected vehicles as 
its vertices and the communication links between them as its edges.  The associated Extended 

Laplacian Matrix �̃�(𝑘) of the VANET graph and the differential coordinate 𝛿𝑖
(𝑘)  =  [𝛿𝑖

𝑥,(𝑘)
 𝛿𝑖
𝑦,(𝑘)

 ]  ∈  𝑅𝑁 × 2 

of each vehicle, can be derived according to that graph modelling and the previously discussed 
measurement models. See [58][59] for more details. The differential coordinates are equal to: 

𝛿𝑖
𝑥,(𝑘)

=
1

𝑑𝑖
(𝑘)

∑ −�̃�𝑑,𝑖𝑗
  (𝑘)𝑠𝑖𝑛�̃�𝑎𝑧,𝑖𝑗

  (𝑘)

𝑗∈𝑁(𝑖)

 

𝛿𝑖
𝑦,(𝑘)

=
1

𝑑𝑖
(𝑘)

∑ −�̃�𝑑,𝑖𝑗
  (𝑘)𝑐𝑜𝑠�̃�𝑎𝑧,𝑖𝑗

  (𝑘)

𝑗∈𝑁(𝑖)

 

, where 𝑑𝑖
(𝑘)

 is the number of connected neighbors to 𝑖-th vehicle. Afterwards, the two following vectors 
are formed: 

𝑏𝑥,(𝑘) = [𝛿𝑥,(𝑘) �̃�𝑝
  𝑥,(𝑘) ]

𝛵
 ∈  𝑅2𝑁 

         𝑏𝑦,(𝑘) = [𝛿𝑦,(𝑘) �̃�𝑝
  𝑦,(𝑘)

 ]
𝛵

∈  𝑅2𝑁 

assuming that the noisy GPS positions of the vehicles of the network act as the anchors. Thus, the two 
following minimization problems have been formulated, based on the graph representation of VANET 
and the sparsity properties of outliers vectors, in order to estimate the locations of 𝑁 vehicles, while at 
the same time to detect and mitigate possible attacks on GPS measurements: 

 

 

Once again, the interior point methods provided by CVX software can be applied in order to solve the 

two minimization problems. Note that vectors 𝑞𝑥,(𝑘) and 𝑞𝑦,(𝑘) are equal to:  

 

 𝑞𝑥,(𝑘) = [0 𝑜𝑥,(𝑘) ]
𝛵
 ∈  𝑅2𝑁 

     𝑞𝑦,(𝑘) = [0 𝑜𝑦,(𝑘) ]
𝛵
∈  𝑅2𝑁 

 

, where zero vector 0 ∈  𝑅𝑁. The outliers of the position must be removed only from the anchors part of 

vectors 𝑏𝑥,(𝑘), 𝑏𝑦,(𝑘) . We named this approach as Robust Graph based Cooperative Localization 
(RGCL). Note that in both cooperative robust methods, regularizing parameters 𝜆1,2,3,4  > 0 control the 

minimization of location estimation term and the outliers estimation term.  

During the detection phase of either of the two robust schemes, a vector containing the Euclidean 
distances between the initial GPS locations and the estimated locations is formed. Afterwards, a small 
threshold equal to 10 is set, implying that distances bellow 10m do not correspond to attacked vehicles, 
while distances greater than 10m may be indicative of an attack. In the latter case, k-means clustering 
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algorithm, with k = 2, is applied on the corresponding distances, producing two clusters with associated 
centres. The cluster with the largest centre contains in fact, the distances that correspond to attacks. 

As such, the ids of spoofed vehicles can be identified. 

Apparently, the collaboration towards multi-modal fusion among the vehicles of VANET can lead to 
estimating their locations more accurately than GPS, as well as defending against GPS spoofing attack. 
More specifically, exploiting the sparsity properties of outliers matrix, our defence mechanism mitigates 
the impact of spoofing and detects the compromised vehicles. 

 

3.3.3 Validation of Methods 

We have validated the collaborating and robust to GPS spoofing attack approaches in a simulated 

environment. A number of vehicles, say 𝑁 = 20, constitute the VANET. For a reduced computational 

load, two vehicles communicate if and only if their distance is up to 20 m and the maximum number of 

connected neighbours is 6. We have chosen 𝜎𝑥  =  3 𝑚, 𝜎𝑦  =  2.5 𝑚, 𝜎𝑑  =  1 𝑚 and 𝜎𝑎  =  𝜎𝑎𝑧  =  4°. 

The true trajectories of the first 3 vehicles moving for 500 time instances are depicted on Figure 3.17. 

They have been created according to the bicycle kinematic model (KM) of [60]. The spoofing attack is 

simulated by adding a bias (sampled uniformly in the interval of [5,40]) to randomly chosen vehicles at 

each time instant, resulting in an average deviation of the true location equal to 34 m. The experiments 

were conducted for a number of 5%, 10%, 20% and 30% compromised vehicles. Initially, we 

constructed the Cumulative Distribution Function (CDF) of Localization Mean Square Error (LMSE) of 

RTCL-MLE, RGCL, spoofed GPS and normal GPS without outliers. In Figure 3.18, the CDFs of LMSE 

for 1 (5%) and 4 (20%) compromised vehicles are being presented. It is clearly evident that both the 

robust schemes significantly reduced the error of spoofed GPS. Moreover, RGCL achieves much better 

performance than RTCL-MLE and even the GPS. Based on that, the reduction of LMSE of RGCL and 

RTCL-MLE with respect to GPS, was 77% and 56%, respectively, for 5% compromised vehicles. 

However, for 20% compromised vehicles, LMSE was reduced by 65% with RGCL, but increased by 

1.02% with RTCL-MLE. As it was expected, when the number of attacked vehicles increased, the 

performances have been degraded. The two proposed cooperative approaches achieved significant 

reduction of spoofed GPS error, by estimating accurately the locations of vehicles. Furthermore, RGCL 

proved to outperform RTCL-MLE. 

During the detection stage, we measured True Positives, False Positives, True Negatives, False 
Negatives, True Positive Rate and False Positive Rate for the entire simulation horizon (500 time 
instances). Afterwards, we constructed the Receiver Operating Characteristics (ROC) curves for 5%, 
10%, 20% and 30% spοofed vehicles and measured the Area Under Curve (AUC). The ROC curves 
for the two schemes are depicted on Figure 3.19. In Figure 3.19(a), RGCL and RTCL-MLE both 
achieved 99% AUC. In Figure 3.19(b), they achieved 95% AUC. In Figure 3.19(c), RGCL achieved 95% 
AUC, while RTCL-MLE 94% AUC. Finally, in Figure 3.19(c), they achieved 95% and 93%, respectively. 
Regardless the number of attacked vehicles, the two robust schemes were able to detect the spoofed 
vehicles, since the classification accuracy was very high, i.e. AUC greater than 90%. We notice also 
that as the number of compromised vehicles increases, the classification accuracy is slightly reduced. 
RGCL performs the same or even better than RTCL-MLE. However, due to its much better performance 
during the mitigation stage, RGCL proves its superiority as a collaborating defence mechanism against 
GPS spoofing. 
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Figure 3.17. True trajectories of three vehicles. 

 

Figure 3.18. CDFs of LMSE of the proposed cooperative and robust schemes for different 
number of compromised vehicles (a) 1 attacked vehicle, (b) 4 attacked vehicles. 

 

Figure 3.19. ROC curves for different number of compromised vehicles, (a) 1 attacked vehicle, 
(b) 2 attacked vehicles, (c) 4 attacked vehicles, (d) 6 attacked vehicles. 
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4 Combination of Standalone Fusion Solutions 

This section provides a description of how standalone fusion solutions can be combined in order to 
increase the overall situational awareness. The standalone fusion solutions that are combined are listed 
below: 

 

i) Combination of camera attack detection solutions 
a. the DriveGuard Convolutional Autoencoder described in D3.2 and  
b. the traffic sign attack detection pipeline described in D4.2 

ii) Combination of GPS location spoofing attack detection solutions 
a. Fusing in-vehicle measurements for detecting spoofing attacks described in Section 

3.2 and  
b. Multi-modal fusion between vehicles for detection location spoofing attacks described 

in Section 3.3 

 

4.1 Combination of External and Internal Camera Attack Detection 
Solutions 

4.1.1 Relevance to Attack Scenarios 

This section will explore the recent progress in artificial intelligence and deep learning to provide holistic 
situational awareness for the camera sensor. Specifically, we describe how to formulate a solution that 
can detect attacks at two different levels thus providing a more robust and holistic situational awareness. 
It can simultaneously detect attacks that manipulate the camera data itself (internal attack) or external 
attacks that attempt to fool the camera perception system by manipulating an external structural 
element such as a traffic sign. The solution is formulated by combining the DriveGuard Convolutional 
Autoencoder described in D3.2 and the detection mechanisms from D4.2 with the traffic sign attack 
detection pipeline described in D4.2. 

 

4.1.2 Sensors and Measurements 

Vision sensors are the most essential sensors in autonomous systems. Sensors such as cameras 
provide rich information related to the environment and such information can be further analysed to 
extract useful semantic information such as detection of vehicles [65], pedestrians [66], traffic signs [67] 
and much more. This analysis is primarily focused on the camera sensors, in particular on the effects 
of camera sensor attacks and the mitigation strategies on the perception engine. In this instance, traffic 
sign detection as well as traffic sign anomaly detection models were chosen as part of the perception 
engine analysis.  

Mainly two types of data were captured in this evaluation, camera frames and traffic signs. Both of 
these data were acquired from a vehicle simulator called Carla [68]. Carla simulator [68] is an open 
source urban driving simulator and can be used to capture various synthetic data such as camera 
frames, segmentation information, depth maps and much more. 
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4.1.3 Methodology Description 

 

Figure 4.1. Illustration of the fusion of internal and external camera attack detection modules. 

As shown in Figure 4.1, the approach follows a hierarchical where first we check for attacks that affect 
the image frame prior to looking for a more specialized form of attack. The rational being that any form 
of general attack will render the whole frame unreliable and thus make it more difficult to identify 
potential attacks on structural elements.  

Thus, the approach is first initiated by passing the input image (attacked or otherwise) through the 
DriveGuard autoencoder model that attempts to reconstruct the input image in case of an attack. The 
detection process of whether the input image is attacked, is done parallel to our model’s mitigation 
process and employs fully connected layers stacked after the generation layer to provide a prediction 
as a second output. This fully connected branch has been trained by first being provided with pairs of 
reconstructed/attacked images and reconstructed/normal images. This branch outputs a probability 
score of whether the image was attacked, which when compared to a threshold provides a detection 
mechanism. Values closer to 1 demonstrate higher attack likelihood, where values closer to 0 indicate 
the opposite. In the case of an attack the detector should be triggered and the output of the should be 
the mitigated generated image and in the opposite scenario the input Image. The input or generated 
image is then propagated to the next stage to check whether any environmental structure has been 
tampered with (e.g., traffic sign). 

4.1.4 Validation of Methods 

I. Validation of internal attack detection 

First for the validation of the internal attack detection we gather images from the CARLA simulator [68] 
by navigating a path with a traffic sign present. These images were then used to construct a dataset of 
attacked images which are considered for the evaluation. Different types of attacks are considered 
simulated such as more traditional ones, as gaussian noise, or by adding artefacts addition similar to 
the ones presented in deliverable D3.2. An example of the visual results is shown in Figure 4.2. Overall, 
the framework manages to have an overall accuracy of 96% and the detection statistics are shown in 
Table 4.1. 

 

Table 4.1. Overall Detection Statistics 

True Positive Rate 0.9285714285714286, False Positive Rate 0 

True Negative Rate 1 False Negative Rate 0.071428571 
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Figure 4.2. First column - Examples of ground truth images with attacked traffic signs, Second 
columns - images with global attacks (i.e. camera sensor level attack) and third columns - 

reconstructed images. 

II. Validation of external attack detection 

For the validation purposes, two experiments were established mainly focusing on the external attacks. 
First is the validation of the traffic sign detection model on attacked and reconstructed images. Second, 
is the validation of the traffic sign anomaly detection for denoised images. The core idea is to 
demonstrate the effectiveness of the denoising process images and the improvement on the 
performance of algorithms used in perception engines, such as traffic sign detection model and anomaly 
detection model used for the external attacks. Table 4.2 and Table 4.3 shows the total samples that 
were used for evaluation purposes. Total of 100 images were used for traffic sign detection and a total 
of 82 images were used for traffic sign anomaly detection. 

 

Table 4.2. Total samples generated images for the evaluation of traffic sign detection 
evaluation purposes. 

Types Samples 

Ground truth images 25 

Traditional attack images 25 

Artefacts attack images 25 

Denoised images 25 

Total 100 

 

Table 4.3. Total samples generated for the evaluation of traffic sign anomaly detection 
evaluation purposes. 

Types Samples 

Traffic signs - Attacked x 2 (types of attacks) 56 
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Traffic signs - Clean 26 

Total 82 

III. Traffic sign detection 

A MobileNet Single-Shot multibox Detection (SSD) v2 [61] was used for the traffic sign detection task. 
The model was trained with the synthetic traffic signs and the overall performance of the model on the 
attack free frames is shown in Table 4.4. The mean Average Precision (mAP) was used as the 
evaluation metrics. The primary characteristic of the metrics is the IoU which determines the overlapping 
between the ground truth bounding box and the predicated one. In Table 4.4, “Ground truth images” 
are the images captured from Carla simulator [68]. The “all attacked images” include both the traditional 
and artefacts attacked ones and the “denoised images” are the images generated by the DriveGuard 
autoencoder model. Figure 4.2, shows all the types of images.  

 

Table 4.4. The overall performance of the MobileNet SSD v2 [69] on both traditional and 
artefact attacks. 

 Evaluation Metrics - Bounding Boxes detection (Precision) (higher is 

better) 

Type mAP at IoU=.50:.05:.95 mAP at .50 IoU mAP at .75 IoU 

Ground truth images 0.3346 0.5859 0.3645 

All Attacked Images 0.29285 0.56845 0.22795 

Denoised Images 0.3025 (3.30% ↑) 0.58295 (2.55% ↑) 0.2619 (14.89% ↑) 

 

 

 

Figure 4.3. The overall performance of the MobileNet SSD v2 [69] on both traditional and 
artefact attacks. 

Table 4.4 and Figure 4.3 shows the overall performance of the traffic sign detection model i.e. MobileNet 
SSD v2 [5], on ground truth, attacked and denoised images. A total of 100 images used for validation 
where 25 x ground truth images, 25 x 2 x attacked types images and 25 x denoised images. The 
performance of the detector degraded when the camera frame is attacked however, due to the applied 
mitigation strategy (i.e. use of DriveGuard network to denoised the attacked images) the traffic sign 
detection model performance improves by 2.27%. Likewise, further analysis was performed to evaluate 
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the effect of individual types of attacks. The Table 4.5, shows the performance of the detector on 
traditional attack and  

Table 4.6, shows the performance on artefacts-based attack. The traditional attack degraded the 
performance of the detector more than the one with the artefacts.  

 

Table 4.5. The performance of the MobileNet SSD v2 [69] on traditional attacks. 

Type mAP at IoU=.50:.05:.95 mAP at .50 IoU mAP at .75 IoU 

Groundtruth images 0.3346 0.5859 0.3645 

Traditional Attack 0.2812 0.5662 0.2167 

Denoised Images 0.2960 (5.56% ↑) 0.5843 (3.20% ↑) 0.2277 (5.08% ↑) 

 

Table 4.6. The performance of the MobileNet SSD v2 [69] on artefacts attacks. 

Type mAP at IoU=.50:.05:.95 mAP at .50 IoU mAP at .75 IoU 

Groundtruth images 0.3346 0.5859 0.3645 

Artifact attack 0.3045 0.5707 0.2392 

Denoised Images 0.3090 (1.48% ↑) 0.5816 (1.91% ↑) 0.2961 (23.79% ↑) 

 

IV. Traffic sign anomaly detection 

 

The traffic sign anomaly detection model was developed for the CARAMEL project and detailed analysis 
of the model have been discussed in D4.2 report. The anomaly detection model is able to detect the 
external attack on the traffic sign such as graffiti, noise etc. To evaluate the performance of the anomaly 
detection on a denoised images after a camera sensor attack, a total of 82 traffic signs were used where 
26 x 2 were attacked traffic signs and 26 were normal ones. Figure 4.4 shows the sample of traffic signs 
used for anomaly detection. The first column is a ground truth traffic image without camera attacks, 
second column is a denoise image of traditional attack and third is denoise artefact attack. Likewise, 
the first row of traffic signs does not have external attack whereas others have external such as graffiti 
and noise attack.  
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Figure 4.4.Sample of traffic signs used for testing purposes. First column - Ground truth 
images without any camera sensor attack, second column - Denoised traffic signs from 

traditional attack and Third column - Denoised signs from artefacts attacks. First row - Traffic 
signs with no external attack, second row - traffic sign with graffiti attack and third row - traffic 

sign with noise attack. 

 

 

 

Figure 4.5. The performance of the traffic sign anomaly detection on denoised images. 

 

Table 4.7. The performance of the anomaly detection model on clean and denoised images. 

Image 
Type 

Ground truth Image (No 
Camera sensor attack) 

Denoise Traffic signs 
(Traditional Attack) 

Denoised Traffic signs 
(Artefacts attack) 

F1 0.8772 0.8761 0.8766 

Precision 0.988 0.7978 0.7988 

Recall 0.7998 0.9854 0.9867 
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Figure 4.6. Confusion matrix for traffic sign anomaly detection on ground truth image, 
denoised traditional and denoised artefacts attacks. 

Table 4.7 and Figure 4.5 shows the performance of the traffic anomaly detection model. The anomaly 
detection performed well on both the type of denoised images, however it performed better on denoised 
images containing artefacts-based attacks than the traditional attacks. From Figure 4.6, it can be seen 
that the model predicted accuracy predicted true positive (0.82) and true negative (0.92) values in 
artefacts attacked whereas the model has higher false positive (0.15) in denoise traditional attack.  

 

4.2 Combination of GPS Location Spoofing Attack Detection 
Solutions 

4.2.1 Relevance to Attack Scenarios 

This section will provide a GPS location spoofing attack detection solution, combing the existing 
standalone solutions mentioned previously in Sections 3.2 and 3.3. Specifically, a fusion scheme based 
on optimal weighting is proposed, for combining the individual location estimates coming from the two 
proposed solutions, minimizing the overall uncertainty of the final location estimation as well as, 
providing robustness on the decision level of the attack detection. 

4.2.2 Methodology Description 

The main aim of this method, is to estimate the current location of the vehicle with minimum uncertainty. 
As shown in Figure 4.7, the two methods of estimating the current location can be combined in order to 

obtain an improved estimated state �̂�. The assumption made here, is that both standalone methods for 
estimating the current location of the vehicle, can provide the corresponding covariance matrices of the 
estimation. 
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Figure 4.7. Block diagram of the location estimates fusion. 

 

The idea is to use an optimal weighting scheme that minimizes the resulting variance. Let 𝑋�̂�, to be the 

𝑎𝑡ℎ estimate of the mean current position of the vehicle and 𝜎𝑎 the covariance matrix associated with 
that estimate. The index 𝑎 can take two values (1 𝑜𝑟 2) i.e., 𝑎 = 1 corresponds to the In-vehicle location 

estimates and 𝑎 = 2, for the Multi-vehicle location estimates. 

An improved estimate �̂� can be obtained by a weight sum of the individual estimates 𝑋�̂� as: 

 

�̂� =  ∑ 𝑊𝑎  𝑋�̂�
𝑎=1;2

 

The 𝑊𝑎  term is a set of 𝑁 𝑏𝑦 𝑁  matrices whose matrix elements are to be obtained in a way that 

minimize the covariance of the improved estimate �̂�. The equation of the improved estimate �̂� can be 
evaluated as: 

 

�̂� = 𝜎 ∑ 𝜎𝑎
−1 𝑋�̂�

𝑎=1;2

 

where, 

𝜎 = [ ∑ 𝜎𝑎
−1

𝑎=1;2

]

−1

 

 

The In-vehicle estimates [𝑋1̂, 𝜎1], are obtained from the procedure described in Section 3.2 and Figure 

3.4 via the EKF where the vehicle’s position is computed, following the motion model, and finally the 

predicted position is updated with the SoO-based estimated position for every time-step. 

On the other hand, the collaborating GPS spoofing defense mechanism of Section 3.3.2 produces two 
estimates (𝑥 and 𝑦 coordinates) for each vehicle of the VANET, removing the impact of spoofing. It is 
straightforward to employ a simple Kalman Filter for each vehicle, to further improve the location 
estimation. Thus, at the first step the vehicle is informed about its position from the defense mechanism, 
and then it utilizes the Kalman Filter. The latter performs the two steps of prediction (according to a 

kinematic model) and correction of estimation 𝑋2̂ and its covariance 𝜎2. The correction step exploits in 
fact the Kalman gain matrix and the measurement vector (obeying a linear measurement model), which 

contains the two estimations produced by the defense. Therefore, the new pair of estimates [𝑋2̂, 𝜎2] 
obtained by the collaborating defense mechanism and the Kalman Filter, can be combined with those 
generated by the in-vehicle procedure, to further robustify location estimation and spoofing detection.  
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5 Conclusion 

This deliverable presents the details of two sensor fusion solutions for detecting camera attacks as well 

as respective mitigation mechanisms; the one is based on LiDAR as an auxiliary data source, while the 

other one is ML-based and uses imagery and GPS data. In addition, two sensor fusion solutions for 

detecting GPS location spoofing attacks are described that leverage either the rich multi-source in-

vehicle sensor data or the exchange of information among neighboring vehicles. All these solutions are 

validated through extensive experiments using realistic data collected with the CARLA simulator. 

Furthermore, two methodologies are described for combining standalone fusion solutions, i.e., one that 

combines the standalone solutions for detecting camera attacks and another one that combines the 

standalone solutions for detecting GPS location spoofing attacks. These methodologies pave the way 

towards enhanced situational awareness and protection against these attacks. 

Next steps include the implementation of a subset of the solutions described in this deliverable and their 

integration into the anti-hacking device that will be documented in deliverable D5.3. In addition, the 

direction of combining complementary solutions to achieve higher detection accuracy and increased 

robustness to measurement noise is promising and the CARAMEL partners plan to explore it further. 
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