CARAMEL (No. 833611)

CARAMEL IDS/IPS Security Module

D5.4

CARAMEL

D5.4

April 2021

Topic

Project Title

Project Number

Project Acronym
Contractual Delivery Date
Actual Delivery Date
Contributing WP

Project Start Date

Project Duration
Dissemination Level
Editor

Contributors

SU-ICT-2018

Artificial Intelligence-based Cybersecurity for Connected and

Automated Vehicles
833611

CARAMEL

M19

M19

WP5

01/10/2019

30 Months

Public

DT-Sec

DT-Sec

Page 1 of 41

CARAMEL (No. 833611)

D5.4

April 2021

Document History

Version Date Remarks

0.1 10/03/2021 Initial version, TOC

0.2 24/03/2021 Details on HSM integration added

0.3 07/04/2021 Details on NVidia Jetson AGX setup added
EST demo described
Missing texts added and structure completely filled
Ready for internal review

0.9 20/04/2021 Pre-final version, ready for review

1.0 29/04/2021 Final version included internal review comments

Page 2 of 41

CARAMEL (No. 833611) D5.4 April 2021

DISCLAIMER OF WARRANTIES

This document has been prepared by CARAMEL project partners as an account of work carried out
within the framework of the contract no 833611.

Neither Project Coordinator, nor any signatory party of CARAMEL Project Consortium Agreement, nor
any person acting on behalf of any of them:

e makes any warranty or representation whatsoever, express or implied,

o with respect to the use of any information, apparatus, method, process, or similar item
disclosed in this document, including merchantability and fithess for a particular
purpose, or

o that such use does not infringe on or interfere with privately owned rights, including any
party's intellectual property, or

e that this document is suitable to any particular user's circumstance; or

e assumes responsibility for any damages or other liability whatsoever (including any
consequential damages, even if Project Coordinator or any representative of a signatory party
of the CARAMEL Project Consortium Agreement, has been advised of the possibility of such
damages) resulting from your selection or use of this document or any information, apparatus,
method, process, or similar item disclosed in this document.

CARAMEL has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 833611. The content of this deliverable does not reflect the
official opinion of the European Union. Responsibility for the information and views expressed in the
deliverable lies entirely with the author(s).

DISCLOSURE STATEMENT

"The following document has been reviewed by the CARAMEL External Security Advisory Board as
well as the Ethics and Data Management Committee of the project. Hereby, it is confirmed that it does
not contain any sensitive security, ethical, or data privacy issues."

Page 3 of 41

CARAMEL (No. 833611) D5.4 April 2021

Table of Contents

LIS o) T U= PP 5
LIS o) 1= o] PP PRRPPR 6
[o] Yol (0] 0} 1 41 TP PO POU PP PPUPPPPTPPRPO 7
EXECULIVE SUMIMIATY .eeiiiiiiiiiiiieeee e e e s e sttt et e e e e e e sttt e e e e e e s e saatataeeeaeesesannteaeeeeeaesesanssssaeaeeeesesnnnseneneeaeesennnns 8
A [0117 Yo 11Tt 1o o FP PSPPSR 9
11 PrOJECT OVEIVIEWeeiiiiiiiee ettt e e ettt e e s b e e e e st b e e e e aabb e e e e sbb e e e e abreeeeaas 9
1.2 DOCUMENT SCOPEtttiiiiee ettt e e s e et e e e s e s e et e e e s e s rreeeaeeeenae 9
1.3 DOCUMENT STIUCKUIE ...ttt n e nnnrnrnrnnn 9

2 The CARAMEL ANti-hacKing DEVICEcccceiiiiiiiiiiiiie ettt e s s s ritane e e e e st ane e e e e e s s snnreaneeeee s 11
3 Integration of HSM into Anti-hacking DEVICEcoiuiiiiiiiiiie et 13
3.1 Integration via 12C into Coral DEV BOAIdcocueiiiiiiiiieiiiiie et 13
3.2 Integration via USB into NVidia JEtSON AGXuuuiuuuiuimiminiminrnininnninininrnininrnrnnnn... 15
3.3 Integration with Kontron K-Box K-BOX A-330 MXG6cuuuuuiuimimimrmininieininimininininrnmn. 16

4 Deployed SOMIWAIE STACKccciiiiiieiiiiie ettt e e e e abe e e e aneee 20
4.1 Docker Image SOftWAre STACK...........coiiiiiiiiiiiiie et 20
4.1.1 Cryptographic Docker Service CONtaINEr...........cccovvviiiiiiiiiiiieeeeeeee e 20
4.1.2 High-level APIs / Client Access from Application Containerscccccccvveveveveiiiiieeenenennn, 20
4.1.3 Detailed Setup of the Provided DOCKEr IMageScoccuvieiiiiiieiiiiiee et 21

5 DemonStration AESCHPTIONciuueiieiitiie ettt ettt ettt s b e ettt e e st e e s e bt e e e enbe e e e e nbreeeennene 23
5.1 Concrete demMONSIratioN SEIUPccooeieie e 23
5.2 Demonstration WalK-throUghuuiiiuiiiiiiii e eeeeeseanrersrnrsrnrsenrnrnrnrnne 25
B5.2.1 LOGIN VI VPN ...ttt ettt e e e et e e et e e e nnbn e e e e 25
5.2.2 SSH to one of the anti-hacking devices (corall, coral2, or caramel-jetson)..................... 26
5.2.3 Start Of DEMO CONAINEIS......coiiiiitiiii ettt e e s et e e e e e e s e aaab e ee e e e e e e annneeees 26

6 CoNCIUSIONS AN NEXE SEEPS....ccc i i 30
7 Annex: Secure Hardware PlatfOrm 31
7.1 ANti-hacking DEVICE OVEIVIEWceiiiiiiieiiiiiee ettt ettt e ettt e et e e sbe e e e e st e e s sbbeeeeabneeeeans 31
7.2 COral DBV BOAI.ttt ettt e e e e e s bbbt e e e e e e e e b b e e e e e e e e e e aaabraaeeae s 33
7.2. 1 HardWare OVEIVIEW........uueiiiiee ittt ettt e e e ettt e e e e e e e st b e e e e e e e e s e aaabbeeeeaeeeeaannneeees 33
7.2.2 Initial Software INStAllAtionc..oviiiiiiii e 35
7.2.3 Dual-boot Configuration for Development PUIPOSEScoccviveiiiiiieiiiiiie e 36

7.3 NVIAIA JEESON AGX ittt ettt ettt e e e e e e bbbttt e e e e e s e abbbeeeeaaeeeaannbbbreeeaaeeeaanns 38
7.3.1 Hardware DESCIIPLIONuiiiii ittt e e e e e ettt e e e e e e e e st e e e e e e e e e s annneeees 38
7.3.2 Software INSLAllAtioNcoeieeiiiiiiiii e e e e e e e a e e e 39

7.4 Kontron K-BoX K-BOX A-330 MXB........uuuuuuuuuuuininiunnininrnnnrnnnnnennnnnnnrnnnnnenrnnnnnsnnnenenrnnnnnnnnnnnnnnes 39
7.4.1 Hardware DESCIIPLIONueeiiie ittt ettt e e e e e et e e e e e e s e st e e ee e e e e e s annneeees 39
7.4.2 Software INSTAllAtioNoooiiiiii e 40

=] 1= (=] T SO 41

Page 4 of 41

CARAMEL (No. 833611) D5.4 April 2021

List o

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

f Figures

The anti-hacking device in the VENICIE ... 11
Anti-hacking device SECUItY fEALUIESccoiiuiiiiiiee e e e 11
TCOS module integration into Coral Dev Board.............cccoouiiiiiiiiiiiiiiiece e 13

NVidia Jetson AGX with TCOS module attached via USB............ccccceiiiiiiiniiinciecc e, 15
NVidia Jetson AGX PIN header assignment 00lcccvviiiiiieiiiiiie e 16
Kontron K-Box board layout and cONNECtOr PINOULSeeoiiiiiieiiiiiie e 17
K-BOX X12 CONNECLON PINOULceiiiuiiiiieiiiieee sttt sttt ettt e sttt e sttt e e i e e e s snee e e s nnnn e e e s nnnneees 18
Kontron K-Box X19 CONNECIOr PINOULeiiiiiiiiieiiiiei ettt 19
Kontron K-Box 12C SOC connection infOrMation............ccocvririeenieeiiee e 19

Anti-hacking software arChiteCtUIE...........eueiiiiiiiiiiie e 20
DT-S€C ML @D N BEFIIN ..ttt et e e e e e 23
Cisco ANyConNEcCt 10gin WINAOW.........ccoiiiuuiiiiieee i e e s st e e e e e et e e e e e e s s s snnenaeeeee s 26
Sample Web ApPliCatiON.........ccooo i 29
Machine Learning PiPeIINe ..o 31
Anti-hacking Device Software ArChitECUIEeeviiiiiiiiiiiiii e 32
Anti-hacking Device Hardware with TCOS module via 12C..........ccccoviiiiiiiniiiie e, 33
Conversion of Tensorflow model for use with Edge TPUccccoiiiiiiiiiiie e 34
Coral Dev Board in AIUMINUM CaASEccuuuiiiiiieeeiiiiiiiiie e e e e sttt r e e e e e snteaee e e e e e e s snneeeeeaeens 35
Coral Dev Board DIP switch positions for SD card boot...........cccccveeeiiiiiiiiiiiiee e 37
NVidia Jetson AGX Embedded CoNntroller...........oouuviiiiiiiiiiiiieee e 38
Kontron K-Box K-BOX A-330 MX6 Embedded Controller...........ccccoviiiiiiiiiieeiiiiiieieeeen 39

Page 5 of 41

CARAMEL (No. 833611) D5.4 April 2021

List of Tables

Table 1: Colour coding and PIN assignments for [2C BUS.........ccvvvviie e 14
Table 2: Computing resources deployed in the ML lab in Berlin ..o, 25
Table 3: Kontron K-Box K-BOX A-330 MX6 hardware specificationsccccveeiiiiieniiiee e 40

Page 6 of 41

CARAMEL (No. 833611) D5.4

List of Acronyms

Al

API
CA
CAN
CCAM
CPU
D
EST
HAB
HSM
HTTP
HW
12C
ICT
ID

IF

IFD

IP
LTE
ML
MMU
0SS
PC
PCSC
PKCS
RAM
RNG
ROM
RSA
SCL
SDA
SSL
TCOS
TEE
ToC
ucC
UsB
V2X
WP

Artificial intelligence

Application Programming Interface
Certificate authority

Controller area network
Cryptographic Accelerator and Assurance Module
Central processing unit

Deliverable

Enrolment over secure transport
High-assurance boot

Hardware security module
Hypertext transfer protocol
Hardware

Inter-Integrated Circuit

Information and communication technologies
Identifier

Interface

Interface device

Internet protocol

Long-term evolution

Machine learning

Memory management unit

Open source software

Personal computer

Personal computer/smart card
Public Key Cryptography Standards
Random access memory

Random number generator
Read-only memeory

Rivest, Shamir, & Adleman (public key encryption technology)
Serial clock line

Serial data

Secure Socket Layer

Telekom Card Operating System
Trusted execution environment
Table of Contents

Use Case

Universal serial bus

Vehicle to X

Work Package

April 2021

Page 7 of 41

CARAMEL (No. 833611) D5.4 April 2021

Executive Summary

CARAMEL system components will address a wide range of security-related topics and technologies,
from cyber threat detection (WP3), cyber-attack prevention (WP4), to in-depth defense mechanisms
(WP5). The objective of WP5 is to provide the design, development, and prototype implementation of
the CARAMEL anti-hacking device and in-depth defense solution. It will be based on different machine
learning-based (ML) algorithms to detect and mitigate cyber-threats, while processing and collecting
large volumes of data in future autonomous vehicle scenarios.

One of the possible attack vectors to V2X (vehicle to X or anything) infrastructure is the impersonation
of V2X components such control units in the car, road-side infrastructure (e.qg., traffic signs), or backend
components, in order to steal sensitive data or interfere with the secure operation of transport
infrastructure (e.g., to carry out terrorist attacks). These considerations are especially valid for the
CARAMEL anti-hacking device. To counter the abovementioned attacks, trustworthy, unforgeable, and
non-copyable identities must be established for the communication partners in a V2X setting. One way
to achieve this goal is to integrate a hardware security module (HSM) into the embedded device that
serves as a repository for private key data (for authentication and encryption purposes) as well as a
cryptographic processor for sensitive operations. This task will address the hardware specification of
the HSM as well as strategies for provisioning cryptographic keys and certificates into the HSM at
manufacturing and later a deployment time.

This document describes the concrete and detailed configuration steps to integrate the CARAMEL
hardware security module based on the Deutsche Telekom TCOS (Telekom Card Operating System)
chip into three different anti-hacking device platforms chosen for the project. This work builds upon the
specification laid out in D5.1 “Hardware Security Module Specifications”.

To this end we describe how the TCOS HSM module can be integrated using USB (universal serial bus
card reader) and 12C (Inter-Integrated Circuit) interfaces on the physical layer. Furthermore, we show
how to configure the anti-hacking device software stack, specifically the Crypto Service Container that
provides high-level API (application programming interface) access to the HSM for applications
deployed to the anti-hacking device in application Containers.

As a demonstration of the work done for this deliverable we have created a sample application that we
describe in the form of a walkthrough. The goal of this sample application is to demonstrate the features
we have implemented for the project as well as to provide a foundation for other partners to build their
pillar-specific anti-hacking device applications that make use of the facilities provided by the TCOS
HSM module.

An annex provides forward-looking information on the hardware and software features of the three anti-
hacking device platforms that we currently support for the CARAMEL project. Building on this
preliminary information we will continue to work on features like secure boot and secure firmware update
as well as secure Docker container technology and describe these efforts in the forthcoming
deliverables D5.5 and D5.6 of WP5.

Page 8 of 41

CARAMEL (No. 833611) D5.4 April 2021

1 Introduction

1.1 Project Overview

The rapidly growing connectivity of modern vehicles opens up numerous opportunities for new functions
and attractive business models. At the same time, the potential for cyberattacks on vehicle networks is
increasing. These attacks entail risks, especially with regard to functional safety and potential financial
damage. CARAMEL’s [1] goal is to proactively address modern vehicle cybersecurity challenges by
applying advanced Atrtificial Intelligence (Al) and ML techniques, and also to continuously seek methods
to mitigate associated safety risks. By adopting well-established methods from the ICT (Information and
communication technologies) sector CARAMEL aims to develop an Anti-hacking IDS/IPS as a
commercial product aimed towards the European automotive cyber security market and to demonstrate
their value through comprehensive attack scenarios.

1.2 Document Scope

CARAMEL system components will address a wide range of security-related topics and technologies,
from cyber threat detection (WP3), cyber-attack prevention (WP4), to in-depth defense mechanisms

(WPS5).

The objective of WP5 is to provide the design, development, and prototype implementation of the
CARAMEL anti-hacking device and in-depth defense solution. It will be based on different machine
learning-based algorithms to detect and mitigate cyber-threats, while processing and collecting large
volumes of data in future autonomous vehicle scenarios. All these processes will be executed with
state-of-art algorithms developed in WPs 3 and 4 of the CARAMEL project - updated in real time
depending on the situational awareness about the underlying system at any time.

One of the possible attack vectors to V2X infrastructure is the impersonation of V2X components such
control units in the car, road-side infrastructure (e.g., traffic signs), or backend components, to steal
sensitive data or interfere with the secure operation of transport infrastructure (e.g., in order to carry out
terrorist attacks). These considerations are especially valid for the CARAMEL anti-hacking device. To
counter the abovementioned attacks, trustworthy, unforgeable, and non-copyable identities must be
established for the communication partners in a V2X setting. One way to achieve this goal is to integrate
a HSM into the embedded device that serves as a repository for private key data (for authentication and
encryption purposes) as well as a cryptographic processor for sensitive operations.

The HSM has been specified in detail in deliverable D5.1 “Hardware Security Module Specifications”
[2]. Based on this specification work this deliverable describes the actual implementation of the HSM
integration on the hardware and software side. This integration is a prerequisite for the integration of
use cases into the anti-hacking device that rely on the functionality of the integrated HSM.

This document will address the actual hardware integration steps of the HSM as well as strategies for
provisioning cryptographic keys and certificates into the HSM at manufacturing and later a deployment
time. The integration of the HSM will be demonstrated using an embedded hardware platform selected
in the course of the project work.

1.3 Document Structure

This document is structured as follows:

Chapter 2 recaps the security features of the anti-hacking device and relates these efforts to other tasks
in WP5.

Chapter 3 looks at the two integration options for the HSM: Either as a 12C-based module for direct
connection to the 12C bus of embedded device, or as general-purpose USB-based solution that involves
integration of the HSM using a USB card reader. The former will be demonstrated using the Coral Dev
Board-based anti-hacking device, while the latter will be demonstrated using the NVidida Jetson AGX-
based device.

Page 9 of 41

CARAMEL (No. 833611) D5.4 April 2021

In chapter 4 we will give a hand-on description of the software stack implemented on both anti-hacking
device variants to support the integration of the anti-hacking device from the software side.

In chapter 5 we give details of the lab setup available for demonstrations and integration tests to be
carried out by project partners responsible for the three pillars of CARAMEL. We provide an initial
certification enrolment solution based on the Deutsche Telekom Trust Center as well as a simple
application container using the Cryptographic Services Container that can be used a blueprint by project
partners to integration their HSM-based solutions.

Note that this deliverable should be read in conjunction with D5.1 [2]. Unnecessary duplication of
content has been avoided.

Additionally, some content planned for D5.5 “Secure Hardware Platform Specification” will be covered
in the annex 7 in order to facilitate understanding some of the HSM integration decisions described in
this document.

Page 10 of 41

CARAMEL (No. 833611) D5.4 April 2021

2 The CARAMEL Anti-hacking Device

Anti-hacking Device

Multi-level security
implemented in CARAMEL

Intrusion detection edge device

Detection
rules/algorithm
update

ogdata
IVN traffic In-car

event display
S]

Redundant CAN * P LP \
Gateway & 1
Computation

Cabin ¥
Master Control
Unit

Backend IDS
& event data
analytics

Master Col
Unit

Master Control Master Control 1V2X channel
Unit Unit 1 - === = = - ———p

L---||- VDR/DTCO*
Engine = -
Monmgomen ‘ Level &Roll ‘ Door ‘ _1 U

1
N Control Modules =
1
1
L~ Tolling-0BU
— ame |

Emission —‘ HVAC ‘
v Secondary
_‘ Cabin|/Os Display
|

Aftertreatment
IPowertrain Domain Chassis & Safety Domain Cabin & Comfort Domain Infotainment &
: Safety relevant Safety relevant Telematics Domain

I_l‘abml
Ltrol ‘

Cabin ‘ nfotainment

Backend
/Internet

.

Tire Pressure
Monitoring

Infotainment Subnet

ChassisSubnet (High Speed CAN
Cabin Subnet (Low Speed CAN)

Body Builder

Battery &
Energy

Powertrain Subnet (High Speed CAN)

Image Source: Continental
In-vehicle Network

Figure 1: The anti-hacking device in the vehicle

The CARAMEL anti-hacking device is designed as a passive intrusion detection device that is integrated
as an additional controller into the vehicle (see Figure 1). The anti-hacking device passively listens to
the car’s internal busses and systems, processes and aggregates raw data from sensors and
communication controllers and uses machine learning (ML) and other heuristics to detect possible
attacks against the vehicle’s systems.

It then actively creates attack reports (events) and sends them to the CARAMEL backend. Details of
the integration of the anti-hacking device into the different CARAMEL scenarios are described in the
CARAMEL specification [4].

The anti-hacking device needs to be updated very frequently to run updated attack detection algorithms
to counter newly discovered attack vectors. This requires frequent updates of the anti-hacking device
firmware and application load. From a vehicle safety perspective any corruption of the anti-hacking
device by malicious actors must be avoided at all costs.

Integrated TCOS

Secure Boot: Module:
Anti-hacking Device
Multi-level security

Prevents Multi-purpose

Physical tampering \ Hardware
implemented in CARAMEL

) Intrusion detection edge device

Secure Firmware

Update: \

Allows frequent,

Security anchor
verified updates

Docker container
Technology:
Secure application
isolation

Figure 2: Anti-hacking device security features

To this end multiple security features will be implemented in the project to harden the anti-hacking
software against any kind of attacks (see Figure 2):

e Secure Boot: The anti-hacking device hardware has fuses (write-once programmable storage
locations) that contain the public keys of acceptable boot loader signatures. The anti-hacking

Page 11 of 41

CARAMEL (No. 833611) D5.4 April 2021

device only loads a correctly signed bootloader. The bootloader in turn verifies the signature of
the Linux Kernel and only continues to load a verified kernel. These measures counter any
physical tampering attacks on the boot medium.

e Secure Firmware Update: The anti-hacking device allows updating the firmware of the Internet
(eg. over the vehicle’s communication controller via LTE/5G). The anti-hacking device only
accepts firmware update files that are properly signed by the anti-hacking device vendor. This
protects the device against the installation of manipulated firmware images. In addition to this
signature check the anti-hacking device implements also Secure Boot and would reboot to the
last known safe state even if the secure firmware signature check were circumvented —
effectively implementing multi-level security here.

o Docker technology: The anti-hacking device encapsulates the actual detection algorithms and
also some system services into Docker containers. This has several advantages: It allows
update of detection algorithms without a full firmware update. Additionally, the detection
algorithms are separated by the protections offered by the Docker runtime against any mutual
interference. As a last security measure, the anti-hacking device only accepts signed Docker
images from pre-defined trusted sources, effectively also implementing multi-level security for
Docker implementation on the anti-hacking device.

¢ Integrated TCOS (HSM) module: The anti-hacking device contains a hardware secure module
(HSM) in the form of a Telekom Card Operating System (TCOS) security chip. Like a smartcard,
the TCOS module offers secure storage of private key materials and certificates and the ability
to run sensitive cryptographic operations securely on chip. The TCOS module offer these
functionalities to Dockerized applications via a high-level security service also implemented as
a Docker container.

This document builds upon the specification in D5.1 “Hardware Security Module Specifications” and
describes in detail the integration steps of the TCOS module into three different anti-hacking device
hardware instances as well as the actual configuration steps for the Docker cryptography service. The
other security features shortly described above will be covered in more detail in forthcoming WP5
deliverables. Some preliminary information necessary for the understanding of the detailed instructions
presented in this document will be introduced in an annex 7.

Page 12 of 41

CARAMEL (No. 833611) D5.4 April 2021

3 Integration of HSM into Anti-hacking Device

This section describes the hardware integration steps as well as some software configuration options
in order to integrate the TCOS module into the three anti-hacking device platforms supported for the
CARAMEL project at the time of this writing.

3.1 Integration via I12C into Coral Dev Board

Figure 3 shows how the TCOS module must be connected the 12C PIN headers on the Coral Dev Board:

Figure 3: TCOS module integration into Coral Dev Board

Table 1 gives the color coding of the cable for 4 12C lines.

Page 13 of 41

CARAMEL (No. 833611) D5.4 April 2021
Colour I12C line Coral Dev Board PIN number I12C device
Yellow 12C2_SCL 5 /dev/i2c-1
Orange Ground 6
Red 3,3V 1
Brown 12C2_SDA 3 /dev/i2c-1

Table 1: Colour coding and PIN assignments for 12C bus

The TCOS integration is performed using a IFD (interface device) handler library for the pcsc-lite

daemon:

lusr/lib/pcsc/drivers/serial/libi2cifd-0.9.3.s0

Additionally, a file libi2cifd must be installed into /etc/read.conf.d with the following contents:

TCOS i2C Reader driver

FRIENDLYNAME "TCOS i2C driver"
LIBPATH {usr/lib/pcsc/drivers/serial/libi2cifd-0.9.3.s0
CHANNELID 1

The IFD handler is configured in /etc/i2c_tcos.conf. For the Coral Dev Board this must contain the

following:

config file: /etc/i2c_tcos.conf
for Version: 0.9.3

#i2C Device Address (7-bit)

DeviceAddress =72

H#H12

Timeout after unsuccessful read (Microseconds - ms)
#ReadWrite_TimeOut = 20000

Number of retries after unsuccessful read
#ReadWrite_Retries =500

Polling Timeout of the function IFD_POLLING_THREAD_WITH_TIMEOUT (ms)
Polling_TimeOut =1000000

Logfile of IFD Handler
Log = /tmpli2c_tcos.log

LogFile of i2C communication
12CLog = /tmp/i2c_comm.log

Device ID of i2c driver
DevicelD = /dev/i2c-1

Note: check that /dev/i2c-1 is included in the device list, otherwise the TCOS module will not be

recognized.

Page 14 of 41

CARAMEL (No. 833611) D5.4 April 2021

3.2 Integration via USB into NVidia Jetson AGX

Figure 4: NVidia Jetson AGX with TCOS module attached via USB

Figure 4 shows a photo of the NVidia Jetson AGX device deployed in the DT-Sec ML lab in Berlin. For
this photo the device was taken out of rack with all cables removed, but the SCM Microsystems, Inc.
SCR331-LC1 / SCR3310 SmartCard reader attached to the one USB type A connector of the NVidia
board. Inside the card reader we have deployed a TCOS smartcard in slot-in format (full-size cards are
also available and will be used for demonstrations and tests in the project).

The SCM card reader is supported by the built-in driver pack of the pcsc-lite installation inside Crypto
Service Container. Therefore, no additional configuration is necessary, only the USB port must be
passed to the Crypto Service Container (see later sections).

The NVidia Jetson AGX device also has I12C PIN headers that can be used to attach the 12C-based
TCOS module. [6]

Page 15 of 41

CARAMEL (No. 833611) D5.4 April 2021

Header Tool

3.3V) 2) 5V
i2c2) 4) 5V
i2c2))) GND
unused]) uartb
GND 9) 8) uarth
unused . 2) unused
unused (13) (14) GND
unused)) unused
3.3V .) unused
unused (19) (28) GND
unused (21) 22) unused
unused (23] 24) unused
GND (25) 26) unused
i2cl (27) 28) i2cl
unused (29) 30) GND
unused unused
unused GND
unused unused
unused unused
GMND unused

[¥¥]
=

L L L W
W =] Ln L

Select one of the following options:

Configure Jetson for compatible hardware
Configure 48-pin eiﬁansinn WEELE
Exi

Figure 5: NVidia Jetson AGX PIN header assignment tool

Figure 5 gives an overview of the default assignments (screen shot of the PIN header assignment tool).
The configuration files given in section 3.1 for the Coral Dev Board can be used without changes if the
proper 12C headers are connected to the board. Since the NVidia Jetson AGX does not provide for
clean integration of the cables and the module into the case we have pursued the USB dongle option
to ease deployment of the solution.

3.3 Integration with Kontron K-Box K-BOX A-330 MX6

The Kontron K-Box A-330 MX6 iMXceet Dual S board [7] is another anti-hacking device platform that
we support in the project. The advantage of the K-Box is its robust case that - combined with the wide-
range power supply support (9 to 32 Volts) and integration CAN (Controller Area Network) bus support
- make it ideal for integration into the vehicle. The K-Box can also be equipped with the Coral USB
accelerator to support light machine learning tasks. Refer to section 7.4 for more information on the
Kontron device we have procured for the CARAMEL project.

Page 16 of 41

CARAMEL (No. 833611)

D5.4

April 2021

The K-Box supports the integration scenario with the USB dongle as described in section 3.2 for the

NVidia Jetson AGX.

In addition to that, the K-Box has two physical 12C connections inside the case. See Figure 6 for an
overview of the PIN header locations on the board [8].

SD-Micro

HDMI LVDS RGB + Touch
~ ; I #FD3g
E\Eugu__]
S e gz?guggzeszgiazn— EEESgNzT e ‘w'gd-l_?r-m -
RUBRE BIPEE fmggeeaneet B PR B g8
[8_—&] EERE g 258 e -
;gaﬁggﬁ?g'?’ qesessazue oo srsesee il 2
uz N _§cl [V Missing pads are
I - _ o y interticnal
_sic; = (=5 3 ™3
o 8 2 e 3 :
X s[eeooct EERE ER cogs D7 :
= 58 B 1 0”.““’; Qﬂjlﬂ‘ \agﬁ'fyv? Fenlence Pads H
88 5 e sind absichtich 'fs‘ﬁz
Bge Gt
g E =1 .rg. Foul]
S S e
L i . E com 1o IREE ['\E“g,!n H
L — ! Cz71 eeg o g M2
N 265 AR aarG262 - cass cay
{5 P -
S e (o] B |8 = |
xi1| & gﬂl“l’? c = = &
4 3 L2d e]
““” " e [T om 0ef?® B S5
=[] 22 & (B8] B e y
]
EI“OP Host/OTG X6 —— - ©
[E {bot Host Xt &= Y R gapeetet]
duhﬂ&lﬁ:llf}lgl—' o
[+ 52 3% S8R a]T 3% ITEaNE &
170 O 2 o 28 Sugla—r—3lly S ELEEEE O
- S 5 O e e]
1
gn bl | I\ ye | — 1
P ! |HEEELEE A RECE AR A Bria e
18-32v DC)
: : 2x USB Ethemet 2 Ethemet 1 RS232 RS485 DIO 1-4
| |
L 1

Figure 6: Kontron K-Box board layout and connector pinouts

Figure 7 and Figure 8 show where the 12C connections are located on the X12 and X19 connections.
Figure 9 gives details on how the I12C connections are connected to the iMX6 SOC integrated on the

board.

Page 17 of 41

CARAMEL (No. 833611) D5.4 April 2021

X1z

—
Bex_LigHTl VLED-
BEX_LIGHT i VLEDe
— GND
«3V3_TFT: = Voo
rer_paTieiE s RO
TeT_oaTi?[iE £ R
TET_pAT18[E ! R2
TET_pAT18[E ! R3
TET_DAT2E 2 R4
TFT_DAT2I[E e ms
TET_paT2{in 1,]
TeT_pATa(TE 12 R7
SEY GND
TET_paTaliE 14 an
TET_pATE[E i a1
TET_DATIo(E e &z
TeT_pATH[EE 17 &3
TET_pAT12(TE L] &t
TeT_pATi[TE il as
TET_BAT1[T E] a8
TET_DATI8(TT £l a7
- GND
TF7_pATe[EE 2 B0
TFT_oaTi[iE 2 B
TFT_paTaiE E B2
TET_pATaE % B3
T _DaTa[E £ 34
TET_DATA(TE = Bs
TFT_DATR[EE = B8
TET_pATI[EE = a7
2] GND
TET_CLKT 2 DCLK
+3V3_TFT-# EE] DIZP
TET_HEvwg[ad) HEYNC
Ter_vevwe[E 2 VSYNC
Te7_pe(iE 2 DE
211 GND
+5V_TFT- L] .5V
T e ey
- GND
-1 &N
TFT_crioo[in £ &PIog
R -) £ =TT
2 anD
— GND
~3VE_TFT: 8 *3V3 Toueh
ToueH £oATE i SO Taueh
ToueH_seU[i el SCL Teueh
TOUCH WAKE[TE 2 Wake Taueh
TouEH_INT[TE o INT Teueh
ZIF Malex-FPC B0pal 801351
&t

Figure 7: K-Box X12 connector pinout

Page 18 of 41

CARAMEL (No. 833611)

Figure 9: Kontron K-Box 12C SOC connection information

D5.4

] ecs oy S P

~] ~IVE_TFTZ
s L1 g SIOR 00V 2 o avs_TFz
132 BO0RMOIMHZ o ML
&=I07_ionaE g _129 L ?otm:or'm 5| GPIO0_TFTZ
L 8001 GOMHZ "
P08 1000[T 18, 11 = PR | GFIDT_TFT2
L1530 GO0R/100M
[l Wlav! LT .] STEY_TFT2
3 GND
3 4
Vel T M1 . | TXON_TFTZ
Lvinsn_Txe ST | TXOIP_TFTZ
, i b GND
LvDsa_Tei_W[1T I o] TXIN_TFT2
Lvose T =TT - =] TXIP_TFT2
Lez CUNZITRIOMN g Tleig
LVDsy_Tez [T o | TXZN_TFTZ
Lviose_Txz =1 - -] TX2P_TFT2
lea cubziT-eaomn L s
LvDgs_cik N[iT ‘. | CLRN_TFT2
wwngs_tik =TT - w5 CLKP_TFT2
L120 CUMIT-00MN o Tang
LvDE_Txa M{TT TR H TraN_TFTZ
Lvioso_Txa =11 - o7 TRIP_TFT2
168 CMMZIT-B00M-N
p—— GND
UEB_ToLsH B[13 ‘- =
use_ToucH (T - ¥
L104 CHMZIT-BIOMN & ;i =
Lizz SOLRAIOMHZ !
2C1_SDA[E 13, 11 - = 7] 12C_S0A_TF12
Liz3 GODRTO0MHZ
201_SCu[E T 9011 =] | 12C_SCL_TF12
erio_iooe[E 16 11 "25 L] TN
eio_ozEan 0 — 5] TRET_TFT2
p—15N0
. 1= «24V_TFTZ
+20 =135 g SUORNIOON 2 | *2ev_TFTZ
L1534 GODRTO0MHZ
crioa 0z [ET = —omooe o H_INV_TFTZ
L GO0R100M
208 inod[E 11 = I =or0E — V_INV_TFT2
L GO0R/100M
Pwiia_ouT[ETT I F|PM_TFT2
p——1 N0
~ p—— GND
.y Li3g Sl NE =T
RE SI0RD0MFZ ey
L—‘ «5_TFTZ
—
'..,1 ESE]

Figure 8: Kontron K-Box X19 connector pinout

April 2021

These diagrams give enough information to integrate the TCOS 12C module into the Kontron K-Box. At
the time of this writing only the USB dongle integration method has been tested, however. We will
pursue the 12C integration path in the course of the project.

Page 19 of 41

CARAMEL (No. 833611) D5.4 April 2021
4 Deployed Software Stack

4.1 Docker Image Software Stack

For security reasons a Crypto Service Docker Container is provided on the anti-hacking device that
encapsulates all direct accesses to the TCOS module (see Figure 10). This encapsulation also enables
easier access to the key material and cryptographic functions provided on the TCOS security module
by applications.

Crvpto High Level API
Se?lvpice SR Other
Application

Docker Container Application

Container (apache-tcos) Containers
(tcos)

Low Level API

TCOS Security Anchor # ML Processor Vehicle BUS IF

Figure 10: Anti-hacking software architecture

Application containers can make use of the cryptographic functions provided by the Crypto Service
Container using a high-level API. For the demonstration setup described in detail in the following
sections we provide a sample application container named “apache-tcos” that makes use of the crypto
container for certificate provisioning. This container can be used a template by project partners to
implement scenario-specific functionality that takes advantage of the integrated TCOS module.

The crypto service container totally hides from the application container(s) how the TCOS module is
integrated into the system (12C vs. USB integration).

41.1 Cryptographic Docker Service Container

The Docker image that directly accesses the TCOS module hardware can be downloaded from here:

https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/tcos.tar

On the Coral Dev Board, install the Docker image like this:

docker load --input tcos.tar

4.1.2 High-level APIs / Client Access from Application Containers

We provide a template / demo docker container that project partners can use and expand for their own
applications. This can be downloaded from:

https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/apache-tcos.tar

On the anti-hacking device, install the Docker image like this:
Page 20 of 41

https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/tcos.tar
https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/apache-tcos.tar

CARAMEL (No. 833611) D5.4 April 2021

docker load --input apache-tcos.tar
A full docker-compose file and some accompanying scripts can be downloaded from here:

https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/apache-demo.tar

4.1.3 Detailed Setup of the Provided Docker Images

The docker-compose.yml file must be changed in order to reflect the device setup (change highlighted
device mappings appropriately) on the anti-hacking device:

version: '3’

services:
tcos:
container_name: tcos-1
image: plasma.atriumberlin.de/tcos
devices:
- "/dev/i2c-0:/dev/i2c-0"
- "/dev/i2c-1:/dev/i2c-1"
- "/devl/i2c-2:/dev/i2c-2"
- "/dev/bus/usb/001/001:/dev/bus/usb/001/001"
- "/dev/bus/usb/001/002:/dev/bus/usb/001/002"
- "/dev/bus/usb/001/003:/dev/bus/usb/001/003"
restart: on-failure
environment:
tokenUrl=pkcs11l:model=TCOS%203.0%20NetKey;manufacturer=T-
Systems%ZOInternatlonaI%ZOGmbH serial=17360000442334;token=8949017360000442334
volumes:
- pll-server:/var/pll-server

apache-tcos:
container_name: apache-tcos-1
image: plasma.atriumberlin.de/apache-tcos
restart: on-failure
volumes:
- pl1-server:/var/pll-server
- lhome/root/apache-demo/html:/var/www/html/status
ports:
- "8080:80"
- "8443:443"
depends_on:
- tcos

volumes:
pll-server:

Additionally, you must adapt the tokenUrl (highlighted) in order to access the specific TCOS module
you have connected via 12C or USB. Specifically, the serial and token values needed to be determined.
In order to do this, launch all containers via

docker-compose up

first. Then exec into the tcos-1 container:

There, display the required information from the installed TCOS module:

pkcs11-tool --module /usr/lib/pkcs11/libpkcs11tcos3NetKey ARM-PCSC-1.8.2.s0 -L
Eg. the output from our test module is:

Page 21 of 41

https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/apache-demo.tar

CARAMEL (No. 833611) D5.4 April 2021

Available slots:
Slot 0 (0x1000): TCOS i2C driver 00 00

token label : 8949017360003147278

token manufacturer : T-Systems International GmbH

token model : TCOS 3.0 NetKey

token flags - login required, rng, SO PIN locked, SO PIN to be changed, token initialized, user PIN

to be changed
hardware version : 3.2
firmware version : 0.0
serial num : 17360003147278
pin min/max . 6/24

Take the serial number 17360003147278 and the token label 8949017360003147278 and change the
line in the docker-compose.yml file accordingly:

tokenUrl=pkcs11:model=TCOS%203.0%20NetKey;manufacturer=T-
Systems%ZOInternatlonaI%ZOGmbH serial=17360003147278;token=8949017360003147278

Now restart the containers (docker-compose down followed by docker-compose up) and exec again
into the tcos-1 container.

You now have to change the PIN from the initial zero PIN to “123456”. Always use “123456” in a
test environment, otherwise scripts and demos assuming this specific PIN might render the
TCOS module unusable if another PIN is set.

Issue the following command in the tcos-1 container to change the initial PIN to “123456”:

pkcs1l-tool --module /usr/lib/pkcs11/libpkcs1ltcos3NetKey ARM-PCSC-1.8.2.s0 --init-pin
Be careful to enter the PIN “123456” here. You can now list the cryptographic objects on the module
like this:

pkcsl11-tool --module /ust/lib/pkcs11/libpkes11tcos3NetKey ARM-PCSC-1.8.2.s0 -login -p 123456 -O
-M

The connection between cryptographic container (tcos-1) and application container(s) (in the
example/demo apache-tcos-1) is done using the remote access layer described in deliverable D5.1 [2].
In order to test the connection exec into the apache-tcos-1 container:

docker exec -it apache-tcos-1 bash

Here, issue the following command to list the cryptographic objects, but now using the remote access
library:

pkcs11-tool --module /usr/lib/pkcs11/pll-kit-client.so -login -p 123456 -O -M

This command should basically yield the same results as directly in the tcos-1 cryptographic container.

Page 22 of 41

CARAMEL (No. 833611)

D5.4 April 2021

5 Demonstration description

In this section we describe a demo setup that is intended to highlight:

e the high-level usage of the TCOS crypto container from another, application-level crypto
container and

e one possible way to procure securely and automatically certificates from a trust center, in this
case the Deutsche Telekom Auto-enrolment trust center.

To this end we have create a simple demo container called “apache-tcos” that contains a sample
application (in this case the Apache HTTP server with PHP enabled) that procures a new certificate for
a private key on the TCOS module upon first startup. The certificate is then delivered via the integrated
HTTP server. It is expected that project partners use this demo container as a blueprint to build more
complex applications and certificate provisioning scenarios for CARAMEL pillars.

5.1 Concrete demonstration setup

!

Public IP: caramel.mine.bz (VPN, 194.41.39.9), caramelx.mine.bz (NAS, 194.41.39.10)

Cisco ASA

Firewall/VPN

!

Private Network 10.0.8.0/24

NUC + eGPU 1

ML PC 10.0.8.10

NUC + eGPU 2

ML PC 10.0.8.11

QNAP NAS 4x 8TB

e =
L5

10.0.8.20

NUC

Backend PC
10.0.8.12

Coral Dev Coral Dev NVidia ‘
Board 1 Board 2 Jetson AGX

Figure 11: DT-Sec ML lab in Berlin

Figure 11 gives an overview of the ML lab we set up in Berlin for the CARAMEL project.

Note: A Kontron K-Box will be added to the lab setup at a later stage after the publication of this

document.
Name IP address |[DNS name Description
10.0.8.1 caramel.mine.bz Cisco ASA Firewall for Cisco Anyconnect VPN access to
the lab infrastructure

Page 23 of 41

CARAMEL (No. 833611) D5.4 April 2021

NUC PC with attached NVidia eGPU for machine
learning and CARLA simulation purposes

16 GB RAM

Core i7 processor
caramell 10.0.8.10 32 GB boot SSD (Optane memory)

2 TB data and home/docker disk

eGPU with NVidia GTX 1080 Ti (11GB GPU RAM)

Ubuntu 18.04

NUC PC with attached NVidia eGPU for machine
learning and CARLA simulation purposes

32 GB RAM

Core i7 processor

1TB boot SSD

2 TB data and home/docker disk

eGPU with NVidia RTX 2070 (8GB GPU RAM)

caramel2 10.0.8.11

Ubuntu 18.04

Coral USB Accelerator attached (Update: currently
removed for tests with the Coral Dev Board)

NUC PC (NUC7i7BNB) with attached NVidia eGPU for
backend containers

16 GB RAM

caramel3 10.0.8.12 Core i7 processor

256 TB data and home/docker disk

Intel® Iris® Plus Graphics 650 (processor graphics)

Ubuntu 18.04

QNAP NAS device
caramel- 10.0.8.20

nas 194.41.39.10

caramelx.mine.bz||8 GB RAM

20 TB HDD (4 x 8 TB RAID5)

KVM-IP switch with VNC protocol access
kvm-ip 10.0.8.30
Currently attached to caramel-jetson

Coral Dev Board
corall 10.0.8.50 1 GB RAM
32 GB SD card

Coral Dev Board

1 GB RAM

coral2 10.0.8.51

Page 24 of 41

CARAMEL (No. 833611) D5.4 April 2021

32 GB SD card

NVidia Jetson AGX
10.0.8.55 32 GB RAM
1TB SSD

caramel-
jetson

Table 2: Computing resources deployed in the ML lab in Berlin

Table 2 gives an overview of the devices deployed in the lab. Of special interest are the two Coral Dev
boards (corall and coral2) as well as the NVidia Jetson AGX device deployed in the lab. These can be
used by project partners remotely. The following remote access options exist:

e Cisco AnyConnect access to caramel.mine.bz (194.41.39.9) for project partners with individual
user ID/passwords

e SSH access (over VPN) to corall and coral2 with root and no password

e SSH access (over VPN) to caramel-jetson with user ID and password (same as for VPN access)

e VNC access to kvm-ip (over VPN) to caramel-jetson, VNC port 5900 with user ID and password
(same as for VPN access)

This facility allows partners to develop application containers for their pillar-specific scenarios to test
their machine learning algorithms on the target platforms including usage of the attached TCOS-based
HSMs without the need for any physical access to this hardware.

5.2 Demonstration Walk-through

We have prepared a sequence of demonstration steps to showcase the different elements of the HSM
integration we have implemented for this deliverable. The steps are as follows:

52.1 Login via VPN

Use a Cisco AnyConnect client for your platform to securely access the lab infrastructure.

Page 25 of 41

CARAMEL (No. 833611) D5.4 April 2021

AnyConnect o]
Secure Mobility Client CISCO

Cisco AnyConnect | caramel.mine.bz

E@% Please enter your username and password.
Group: caramelvpn
Username: hofmannp

Password:

Passworter ... Cancel m

Figure 12: Cisco AnyConnect login window

Enter Username and Password in the Cisco AnyConnect login screen (see Figure 12). After the VPN
session is connected, the VPN allows access to the 10.0.8.0/24 subnet of the lab network.

5.2.2 SSH to one of the anti-hacking devices (corall, coral2, or
caramel-jetson)

Use the following commands to access the command line of the anti-hacking devices:

e corall: ssh root@10.0.8.50 (no password)
e coral2: sshroot@10.8.8.51 (no password)
e caramel-jetson: ssh username@10.0.8.55 (password from VPN access)

On the Coral Dev Board devices you will find our CARAMEL-specific Yocto firmware load with limited
command line binaries available. The caramel-jetson device, however, is based (at the time of this
writing) on Ubuntu 18.04 and supports a large number of commands for test and development
purposes.

523 Start of Demo Containers

The following assumes that the apache-demo.tar archive is unpacked under the src directory (refer to
section 4.1.3 for the download link to this demo archive).

Here we reproduce a trace of the first startup of the tcos and apache-tcos containers. The apache-tcos
log contains verbose information from the EST (enrolment over secure transport) provisioning tool that
requests the initial certificate from our Deutsche Telekom auto-enrolment trust center:

caramel-jetson:~/src/apache-demo$ docker-compose up
Creating network "apachedemo_default" with the default driver
Creating volume "apachedemo_pl1-server" with default driver
Creating tcos-1 ...

Creating tcos-1 ... done

Creating apache-tcos-1 ...

Page 26 of 41

mailto:root@10.0.8.50
mailto:root@10.8.8.51
mailto:username@10.0.8.55

CARAMEL (No. 833611)

Creating apache-tcos-1 ... done
Attaching to tcos-1, apache-tcos-1

tcos-1

P11_KIT_SERVER_ADDRESS;

tcos-1

D5.4 April 2021

| P11_KIT_SERVER_ADDRESS=unix:path=/var/p11-server/pll-server.sock; export

| P11_KIT_SERVER_PID=17; export P11_KIT_SERVER_PID;

apache-tcos-1 | AHO0558: httpd: Could not reliably determine the server's fully qualified domain name, using 172.18.0.3. Set
the 'ServerName' directive globally to suppress this message

tcos-1
tcos-1
tcos-1
tcos-1
tcos-1
tcos-1
tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1
apache-tcos-1

| Successfully changed to user polkitd

| 13:11:41.260: Loading rules from directory /etc/polkit-1/rules.d

| 13:11:41.260: Loading rules from directory /usr/share/polkit-1/rules.d
[13:11:41.262: Finished loading, compiling and executing 3 rules

| Entering main event loop

| Connected to the system bus
| 13:11:41.265: Acquired the name org.freedesktop.PolicyKitl on the system bus

| Using slot 0 with a present token (0x10)
| Using slot 0 with a present token (0x10)

| writing RSA key

| Using slot 0 with a present token (0x10)

| Created public key:

| Public Key Object; RSA 2048 bits

label:
ID: df024e01
Usage: encrypt, verify

Public Import Key

sing slot 0 with a present token (0x10)

rivate Key Object; RSA
label:
ID: df024e01
Usage: decrypt, sign
| [D-STORAGE]
| [I[D-STORAGE]
| [CEST]
| [CEST]
| [CEST-CLI]
| [D-STORAGE]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]

|

|

|

|U

| Created private key:
| P

|

|

|

Private Import Key

failed to open certificate file

failed to process certificate file

failed to load identity from filesystem

found no valid identity to restore

will append intermediate CA certificates when storing leaf certificate
trying to load certificate from: /root/.est/id_rsa.cert.pem

connecting to autocert.test.telesec.de on port 443

connection established

performing tls-handshake

server certificate valid

using cipher suite TLS-ECDHE-RSA-WITH-AES-256-GCM-SHA384
written ssl data: 243/243

retrieved 2684 of max 4000 bytes

completed https transaction

| [EST-HTTPS] https certificate request succesfull

| ID-ENCODING]
| [ID-ENCODING]
| ID-STORAGE]

| ID-STORAGE]

| [ID-STORAGE]

| [CEST]
| ID-STORAGE]
| [ID-STORAGE]
| [CEST]

| [CEST]

| [CEST-CLI]
| [CEST-CLI]
| [D-STORAGE]
| [CEST]
[IDENTITY-SOFTWARE]
| IDENTITY-SOFTWARE]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]
| [HTTPS-NET-MBEDTLS]

found valid certificate

found valid certificate

prepared single certificate for writing

succesfully wrote certificate to file

succesfully wrote certificate to file

stored trust chain

failed to open certificate file

failed to process certificate file

failed to load identity from filesystem

found no valid identity to restore

using 'sdg220a07ea2h455N' for authentication

identity will be identified by 'CN=secure_gw,0OU=Clients,O=Bosch’
trying to load certificate from: /root/.est/id_rsa.cert.pem
generating new private key

generating new private key now. This may take a while...

finished generation of new private key

connecting to autocert.test.telesec.de on port 443

connection established

performing tls-handshake

server certificate valid

using cipher suite TLS-ECDHE-RSA-WITH-AES-256-GCM-SHA384
written ssl data: 243/243

retrieved 2684 of max 4000 bytes

completed https transaction

| [EST-HTTPS] https certificate request succesfull

| [ID-ENCODING]
| [ID-ENCODING]
| [EST-PKCS10]

found valid certificate
found valid certificate
signing the csr

Page 27 of 41

CARAMEL (No. 833611) D5.4 April 2021

[EST-PKCS10] pem-encoding the csr
[EST-PKCS10] generated csr successfully
[EST-PKCS10] generated csr successfully
[EST] generated csr:

MIICnTCCAYUCAQAWNEOMAWGALUECgwFQmM9zY2gxEDAOBgNVBAsMBONsaWVudHMXEjAQBgNVBAMM
CXNIY3VyZV9ndzCCASIwDQYJKoZIhveNAQEBBQADggEPADCCAQoCggEBAN/TTiHu6u+ermbwAAIb
BXoqV+xPBjibY+qHEGKDFdyCijLSi3f5Kk8gJ7e4T4ygj7g9yk0gpRiz7IKzQyzyyHtu2T0/5+Izs
IP73fIrTIEZIYIIKTE2tMTXRZXUt5XE+w407gNgrxxFCHZCeKU4f8Hb13alouONBb4GgKWS8AIY
XvpfPhg6pUrcaPAQoN5t8BJIHsTF7nkWi7Z5tKfa30sEjYVUcc3gT5MV08sSOQBOINDwWIL/HcaSoS
NEn3yitry4dju7u0Fza0OEXrGE1HENJbbDOexThpkIMOMB84EdN466jc5r+GZeCBkN/rI9Bd9vGUIlo
3agXpgsoKKo20FgnpFpkCAWEAAaAIMCAGCSqGSIb3DQEJBzETDBFzZHEyMm9hMDdIYTJoNDU1TjAN
BgkghkiGOWOBAQsSFAAOCAQEA042xg+xoHU7S5fXmIGNvZW90ogKhWICQKrBHyzJt6nHItgrgSEU6g
PsdpddgwaUJiWwpA050BR/CZZd0erNwljlyHI9VFnhhOfVyUOY T3040V DIt0fx7q+iQn853yW37wP
cgQP5++tzZJAOPTNUNzgstEpOpiSmMPKM9BdbVTv2pSFQYFzZ8Pg6zVmucleLHrxtAdumRysNy2DMS
k8b/FT97JCfHgbfHI6Cefru8ZmwztgpMlyludgv91UIVwDz8QhI3/GICp/pPd560JfN6aWbro++t
0BB2cgCze4cFkRYWsmYaAxdNwSLCuD/OQSJ7G5/+ighGJt/+8ERL5V10yWOhbg==

[EST] attempting enroliment for 'CN=secure_gw,OU=Clients,O=Bosch' with challenge
'sdg220a07ea2h455N'

[HTTPS-NET-MBEDTLS] connecting to autocert.test.telesec.de on port 443

[HTTPS-NET-MBEDTLS] connection established

[HTTPS-NET-MBEDTLS] performing tls-handshake

[HTTPS-NET-MBEDTLS] server certificate valid

[HTTPS-NET-MBEDTLS] using cipher suite TLS-ECDHE-RSA-WITH-AES-256-GCM-SHA384

[HTTPS-NET-MBEDTLS] written ssl data: 1181/1181

[HTTPS-NET-MBEDTLS] retrieved 1384 of max 4000 bytes

[HTTPS-NET-MBEDTLS] completed https transaction

[EST-HTTPS] https certificate request succesfull

[EST] received response:

MIAGCSqGSIb3DQEHAqCAMIACAQEXADCABgkghkiGOWOBBWEAAKCAMIID2TCCAsGgAwWIBAgIBGzANBgkghkiGOWOBAQS
FADAfMROWGwYDVQQDEXRUZXNOIEJvc2NolENBIENsaWVudDAeFwOyMTAOMDY xMzEyMzFaFwOyMjAOMDYyMzUSNTIa
MDYxDjAMBgNVBAoTBUJvc2NoMRAwWDgYDVQQLEwdDbGIIbnRzMRIWEAYDVQQDDAIzZWN1cmVfZ3cwggEIMAOGCSqGS
Ib3DQEBAQUAA4IBDWAWGgEKACIBAQDf004h7urvng5m8AACGWVEKIfsTwY4m2PghxBigxXcgooyOot3+SpPICe3uE+Mol+4M
pNIKUYs+5Ss0Ms8sh7btk9P+pc7Pz+493yadkyBM/8ov5EXNrZk8UcllLecRPsOKO4Daq8cRQh2QnilOH/B29d2taL tDQW+Bo
CIVACGF76Xz4YOqVK3GjwEKDebfASR7Hxe55Fou2ebSn2t9LBI2FVHHNA4E+TFdPLEJKATpZwW8PS/x3GkqEjRJ980ra8uHY 7u7
tBc2tBF6XhNRXDSW2wznsU26ZJTDjPOBHTeOuo030a/hmXggZDfeyPQXfbxICKN6I6arK CigNgBap6RaZzAgMBAAGjggEHMIIB
AzAfBgNVHSMEGDAWgBTBeEVOLNfXCS1fmYQFEZFBA/L20zAdBgNVHQ4EFgQU8VxpAoapiqYVSHc/+04wnJsZAzlwDgY
DVROPAQH/BAQDAgWgMBMGA1UdJQQMMA0GCCsGAQUFBWMCMAKGALUJEWQCMAAWTQYDVROfBEYWRDBCoECgP
0Y8aHR0OcDovL2NybC5hZWNhLnRIc3QudGVsZXNIYy5kZS9jcmwvVGVzdFICh3NjaF9DQVIDbGIIbnQuY3JsMEIGCCsGAQU
FBWEBBDYwWNDAyYBggrBgEFBQcwAYYmaHROcDovL29jc3AuYWV]Y S50ZXNOLNRIbGVzZWMuZGUvb2NzcHIwDQYJKoZlhve
NAQELBQADggEBACqgMRxYi02V6zhs2725EF+njIFxVITGIMtRIFi4CY 3Tcw/bbmxGY GFXP4pJDW+AKvW SQOfnej/WslyjtzsE
xvmZGkQ4GEVLNbk931c9zg5NiDGAIX+5I5WTn9Epp103bW0dnSsvM119W+Rqgr579tiM/U+elnl6Ao/jQsgjA7cNI0v46fZ5CzAD
JGINS2weB6hHWUAVLYRVTYfIQROLQKFXUCSUS2jk2gPbgGFiyY JKe TmIAGKLUDICxSscKKkzGt936gLRIL+bpEsg75zXQjAp
tTvKtl/sQcwmUYLJt2tiwB/0Dz3w7cn7mKDPjgvRskEOAzgpo5PDKnplrmVEeUSWAADEAAAAAAAAA

[ID-STORAGE] prepared single certificate for writing
[ID-STORAGE] succesfully wrote certificate to file
[ID-STORAGE] storing single certificate succesfull
[ID-STORAGE] succesfully wrote private key to file
[ID-STORAGE] storing private key succesfull
[CEST] sucessfully generated new identity

After this initial configuration is performed, the TCOS module is initialized with the new certificate from
the Deutsche Telekom auto-enrolment trust center. We have implemented a simple web interface to
show details from this certificate (Figure 13):

Page 28 of 41

CARAMEL (No. 833611) D5.4 April 2021

eee M < 5] 10.0.8.55 me O O M + O
TELEKOM SECURITY AUTO-ENROLLMENT CERTIFICATE

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 27 (0xlb)

Signature Algorithm: sha256WithRSAEncryption
Issuer: CN = Test Bosch CA Client

validity

Not Before: Apr 6 13:12:31 2021 GMT

Not After : Apr 6 23:59:59 2022 GMT

Subject: O = Bosch, OU = Clients, CN = secure_gw
Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:
00:df:d3:4e:21l:ee:ea:ef:9e:ae:66:£0:00:02:1b:
05:7a:2 7:ec:4£:06:3 b:63:ea:87:1 2:83:
15:dc:82:8a:32:d2:8b:77:£9:2a:4f:20:27:b7:b8:
4f:8c:a0:8f:b8:32:93:48:29:46:2c:fb:%4:ac:d0:
cb:3c:b2:le:db:b6:4f:4f:f9:fa:5c:ec:fo:fezed:
dd:f2:6b:89:32:04:cf:fc:a2:fe:44:cd4:da:d9:93:
c5:1c:d7:52:de:71:13:ec:38:a3:b8:0d:aarbe:71:
14:21:d9:09:e2:94:el:££:07:6f:5d:da:d6:8b:b4:
34:16:£8:1a:02:96:£0:02:18:5e:fa:5f:3e:18:3a:
aS:da:xd 8:£0:10:a0:d d:f0:12:47:b 1:7b:
9e:45:a2:ed:%e:6d:29:£6:b7:d2:c1:23:61:55:1c:
73:78:13:€4:05:74:f2:c4:8e:40:13:a5:9c:3c:3d:
2f:f1:dc:69:2a:12:34:4 7:cai2bibbic 7:63:
bb:bb:b4:17:36:b4:11:7a:c6:13:51:c4:34:96:db:
Oc:e7:bl:4d:ba:64:94:c3:8c:£3:81:1d:37:8e:ba:
Bd:ce:6b:£8:66:5e:08:19:0d:fe:b2:3d:05:df:6£:
19:42:28:de:a5:e9:aa:ca:0a:2a:8d:aB:16:a9:e9:
16:99

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Authority Key Identifier:
keyid:C1:78:45:4E:2E:77:D7:09:2D:5F:99:84:05:11:91:41:03:F2:F6:3B

X509v3 Subject Key Identifier:
F1:5C:69:02:86:A9:8A:A6:15:48:77:3F:FB:4E:30:9C:9B:19:03:32
X509v3 Key Usage: critical

Digital Signature, Key Encipherment

X509v3 Extended Key Usage:

TLS Web Client Authentication

X509v3 Basic Constraints:

CA:FALSE

X509v3 CRL Distribution Points:

Full Name:

Figure 13: Sample Web Application

Page 29 of 41

CARAMEL (No. 833611) D5.4 April 2021

6 Conclusions and Next Steps

This specification document has described the concrete and detailed configuration steps to integrate
the CARAMEL hardware security module based on the Deutsche Telekom TCOS chip into three
different anti-hacking device platforms chosen for the project.

In chapter 3 we have described how the TCOS HSM module can be integrated using USB (card reader)
and 12C interfaces on the physical layer.

In chapter 4 we have described how to configure the anti-hacking device software stack, specifically
the Crypto Service Container that provides high-level APl access to the HSM for applications deployed
to the anti-hacking device in application Containers.

In chapter 5 we have described the sample application in the form of a walkthrough. The goal of this
sample application is to demonstrate the features we have implemented for the project as well as to
provide a foundation for other partners to build their pillar-specific anti-hacking device applications that
make use of the facilities provided by the TCOS HSM module.

In annex 7 we have provided forward-looking information on the hardware and software features of the
three anti-hacking device platforms that we currently support for the CARAMEL project. Building on this
preliminary information we will continue to work on features like secure boot and secure firmware update
as well as secure Docker container technology and describe these efforts in the forthcoming
deliverables D5.5 and D5.6 of WP5.

Page 30 of 41

CARAMEL (No. 833611) D5.4 April 2021

7 Annex: Secure Hardware Platform

This annex provides preliminary information that will be presented in greater detail in D5.5 “Secure
Hardware Platform Specification” in order to help understanding the HSM integration steps described
in this document. Due its preliminary nature some of the material presented here is still very at a high-
level of abstraction and subject to change while the implementation work progresses.

7.1 Anti-hacking Device Overview

The CARAMEL anti-hacking solution is an important part of the project innovation. In this section, we
have a deeper look on the general architecture and functionalities of it.

CAN bus events Visualization

Automotive
Ethernet events

Mitigation

ML

Knowledge
Base

Figure 14: Machine Learning Pipeline

The anti-hacking device is a physical controller that is integrated into the car and acts as an attack
detection device. In the Autonomous Mobility scenario its task is to run pre-trained ML models that work
on the sensor data to detect anomalies that might point to malicious attacks. Additionally, the anti-
hacking solution might be used for different functions in the context of the CARAMEL project, i.e. if
needed it can ensure security for an embedded application platform. In this case, the software layer of
the solution might be employed only. Further details about this approach will be presented in the rest
of this document.

The anti-hacking device is connected to the busses in the car carrying the sensor data. It passively
monitors the bus traffic (e.g. CAN bus frames) and extracts the raw sensor data.

Figure 14 shows the ML pipeline where raw data, e.g. from the CAN bus is pre-filtered and aggregated
to make it suitable for the following machine learning stage to detect threats and attacks. Any security-
relevant events are then forwarded to the visualization and mitigation components in the car.

The ML knowledge base (model) is pre-loaded into the anti-hacking device. The model will have been
created offline on a more powerful system based on simulated and real-world training data.

Page 31 of 41

CARAMEL (No. 833611) D5.4 April 2021

HW interfaces (CAN, Automotive ETH) ML hardware

HSM (TCOS 3 via 12C)

Figure 15: Anti-hacking Device Software Architecture

Figure 15 shows an overview of the software and hardware architecture of the anti-hacking device.
From bottom-up the following components make up the anti-hacking devices:

Hardware (HW) Interfaces: The anti-hacking device will be connected to the in-car systems via
appropriate interfaces used in the automotive industry such as the CAN bus or Automotive
Ethernet connections. For integration into development and simulation frameworks standard
Ethernet will also be supported.

The anti-hacking device will also support machine learning (ML) hardware. Since the anti-
hacking device is based on the Coral Dev Board the Tensorflow Lite Processing Unit (TPU) is
the hardware element to support ML. For a development and simulation configuration the Coral
USB Accelerator will also be supported.

HSM (hardware security module): To provide security-related functions of the anti-hacking
device the hardware will integrate a Secure Element or HSM in the form of a TCOS (Telekom
Card Operating System) embedded smartcard module that supports secure storage of private
keys and different cryptographic operations.

The anti-hacking device itself is based on an NXP Freescale i.MX8 processor that supports
security functions such as hardware-assured boot.

On this security hardware runs a Yocto-based firmware layer (a Linux embedded meta
distribution).

On top of this firmware substrate Docker-based application-specific containers can be loaded.
Out-of-the box there will be crypto containers supporting the security functions of the anti-
hacking device. ML workloads will be also be implemented as containers that have access to
the underlying ML hardware as well as the crypto functions exported by the crypto container.

The anti-hacking device could also act as a secure run-time environment for other functions as
needed by the different use cases.

Page 32 of 41

CARAMEL (No. 833611) D5.4 April 2021

7.2 Coral Dev Board

7.2.1 Hardware Overview

Figure 16: Anti-hacking Device Hardware with TCOS module via I12C

Figure 16 shows a picture of both the final target hardware - the Coral Dev Board?.
The Coral Dev Board has the following hardware specifications:

e CPU: NXP i.MX 8M SOC (quad Cortex-A53, Cortex-M4F)

e GPU: Integrated GC7000 Lite Graphics.

e Coprocessor: Google Edge TPU.

e RAM: 1GB LPDDRA4.

e Flash memory: 8GB eMMC.

e Connectivity: Wi-Fi 2x2 MIMO (802.11b/g/n/ac 2.4/5GHz) Bluetooth 4.1.

e Dimensions: 48 x 40 x 5mm.

The i.MX8 SOC includes advanced security features such as HAB (high-assurance boot) and CCAM
(Cryptographic Accelerator and Assurance Module) that will support the security features of the Anti-
hacking device. The firmware for the i.MX8 SOC will be created using the Yocto environment which is
an industry-standard toolkit to create custom embedded firmware images in a reproducible manner.
Our build process will support signed bootloaders and Linux kernel in order to prevent tampering with
the anti-hacking device software and configuration.

The Coral Dev Board also has many connectivity options integrated on the board:

1 https://coral.ai/docs/dev-board/get-started/
Page 33 of 41

CARAMEL (No. 833611) D5.4 April 2021

e Ethernet port (can be used for IP-based connections in a simulation and test environment, or
to attach Automotive Ethernet adapters if needed)

e GPIO and 12C ports (used for connecting the HSM module, can be used for other purposes as
well)

e USB port (used in the project to connect USB-to-CAN-bus converters)
e Wireless connectivity - Wi-Fi and Bluetooth

The Edge TPU processor integrated into the Coral Dev Board supports the execution of Tensorflow Lite
models, performing 4 trillion operations (tera-operations) per second (TOPS), using 0.5 watts for each
TOPS (2 TOPS per watt). The same Edge TPU is integrated into the USB Accelerator stick, so similar
performance can be expected in the Anti-hacking Device simulation environment.

TensorFlow model TRAIN EXPORT Frozen graph
—— > | TensorFlow model | ——

32-bit float numbers Quantization .pb file

aware training

or

CONVERT

Post-training TensorFlow Lite Converter
quantization

DEPLOY

TensorFlow Lite COMPILE
— Coral Hardware

s
8-bit fixed numbers .tflite file

Edge TPU model

Figure 17: Conversion of Tensorflow model for use with Edge TPU

Figure 17 (source: compile-workflow.png) shows how TensorFlow models created by a machine
learning process (e.g. running in the cloud or on project hardware) can be converted for use with either
Coral Dev Board or the Coral USB Accelerator.

The 12C ports of the Coral Dev Board will be used to connect an HSM (hardware security module)
based on the TCOS (Telekom Card Operating System) specification to act as an embedded Secure
Element (eSE) and security anchor for the Anti-hacking device. The HSM is meant to support the
following functions:

e Authentication of the Anti-hacking device for remote provisioning and updates
e Provide support for other CARAMEL use cases that need HSM functionality

e Authentication of the anti-hacking device against central systems such as Automotive SOC
(Security Operations Centre) for event reporting and alerting

Page 34 of 41

https://coral.ai/static/docs/images/edgetpu/compile-workflow.png

CARAMEL (No. 833611) D5.4 April 2021

Figure 18: Coral Dev Board in Aluminum Case

Figure 18 shows the final integration of the Coral Dev with 12C module into an aluminum case. This
configuration is suitable for deployment into vehicles and test environments.

7.2.2 Initial Software Installation

The firmware for the Coral Dev Board is specifically created for the CARAMEL project using a Yocto-
based Linux firmware build process [11]. The details of the build process will be described in D5.5 and
D5.6. The firmware is provided for installation on a 32 GB Micro SD card inserted in the Coral Dev
Board.

First, install the official Mendel OS on the internal eMMC as described in [5].

The latest version of the Yocto-based firmware for the SD card built for the CARAMEL project is
available via this link:

https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/core-image-base-coral-dev.wic.gz

The following instructions assume that you use the “Dual-boot configuration for development purposes”
described in section 7.2.3 and execute all the commands when booted into Mendel OS. If you use any
other operating system (such as Linux or MacOS) you will have to adapt the commands appropriately.

First boot into Mendel OS and download the current Yocto-based firmware from the link above. Then
execute the following commands to write the firmware to the Micro SD card (32 GB recommended):

zcat core-image-base-coral-dev.wic.gz | sudo dd of=/dev/immcblkl bs=4M

Page 35 of 41

https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/core-image-base-coral-dev.wic.gz

CARAMEL (No. 833611) D5.4 April 2021

Then resize the root partition on the SD card to fill the rest of the available space:
resize2fs /dev/immcblk1p2
This is needed to provide enough space for the Docker images on the card.

At the moment docker-compose is not properly set up in the provided firmware image. Please execute
the following commands while connected to the Internet to install the missing dependencies:

wget "https://bootstrap.pypa.io/get-pip.py"

python3 get-pip.py

pip3 install "jsonschema<3,>=2.5.1"

cd /usr/lib/python3.7/site-packages/

rm -rf PyYAML-5.1.2-py3.7.egg-info

pip3 install "PyYAML<4,>=3.10"

pip3 install "requests!=2.11.0,'=2.12.2,!1=2.18.0,<2.20,>=2.6.1"

This problem will be corrected in a forthcoming version of the Yocto firmware build.

7.2.3 Dual-boot Configuration for Development Purposes

For development purposes it is recommended to leave the boot switches as is into order to boot into
Mendel OS first. To test the Yocto build you have to boot from the SD card, however. This can be
achieved by interrupting the automatic uboot by pressing a key and issuing the following commands on
the uboot command line (it make take some time until the kernel is loaded and booting, so don’t power
cycle but wait):

setenv bootdev 1
setenv bootcmd "ext2load mmc 1:1 ${loadaddr} boot.scr; source; boota mmcO boot_a;"
saveenv

boot

Note that you must use the serial console (ie. the Micro USB port on the Coral Dev Board) connected
to a PC to interrupt the boot process and enter the abovementioned commands.

Of couse, after the Yocto-based firmware has proven stable, it is possible to permanently switch to SD
card boot by changing the DIP switch positions as follows:

Page 36 of 41

https://bootstrap.pypa.io/get-pip.py

CARAMEL (No. 833611) D5.4 April 2021

Figure 19: Coral Dev Board DIP switch positions for SD card boot
In order to boot from Mendel OS you then need to interrupt the uboot process again and issue these
commands

setenv bootdev 0

setenv bootcmd "ext2load mmc 0:1 ${loadaddr} boot.scr; source; boota mmc0 boot_a;"

saveenv

boot

Page 37 of 41

CARAMEL (No. 833611) D5.4 April 2021

7.3 NVidia Jetson AGX

7.3.1 Hardware Description

Figure 20: NVidia Jetson AGX Embedded Controller

Figure 20 shows the NVidia Jetson AGX embedded controller. The Jetson AGX is the most performant
member of NVidia’s Jetson range of devices. It features:

GPU: 512-core Volta GPU with Tensor Cores

CPU: 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3

Memory: 32GB 256-Bit LPDDR4x | 137GB/s

Storage: 32GB eMMC 5.1

DL Accelerator: (2x) NVDLA Engines

Vision Accelerator: 7-way VLIW Vision Processor
Encoder/Decoder: (2x) 4Kp60 | HEVC/(2x) 4Kp60 | 12-Bit Support
Multiple USB connectors

GPIO header with I12C

Page 38 of 41

CARAMEL (No. 833611) D5.4 April 2021

We have also integrated a 1 TB NVMe SSD to store large datasets locally on the device.

7.3.2 Software Installation

As of the time of this writing the NVidia provides a Jetson-specific firmware based on Ubuntu 18.04 that
provides a uniform runtime and development platform for all Jetson devices.[6] The NVidia developer
documentation [6] describes the installation processes of the firmware in detail.

Since the anti-hacking device functionality is based on Docker images and the Docker runtime is pre-
installed in the Jetson firmware no further software installation is necessary in order to run the
CARAMEL software stack on the device.

7.4 Kontron K-Box K-BOX A-330 MX6

7.4.1 Hardware Description

“

Figure 21: Kontron K-Box K-BOX A-330 MX6 Embedded Controller

CPU NXP i.MX6 Dual Core/ULL Arm Processor
RAM technology DDR3L

Capacity 512 MByte (MX6-ULL)

Graphics format 1080p — 1920x1080

Page 39 of 41

CARAMEL (No. 833611) D5.4 April 2021

USB ports 2x USB 2.0

Ethernet ports 2x Fast Ethernet

Serial and other ports 1x RS232, 1x RS485 (switchable CAN) 4x Digital Out
Graphics port HDMI

Internal storage 4GB eMMC

External storage Micro SD slot

(ON) Yocto

Construction Stainless steel

Cooling Fanless

Dimensions (HXWxD) 111 x 25 x76 mm

Weight Approx. 0,26 kg

Mounting for mounting on 35mm mounting rail acc. to EN 60715
Operating temperature 0°Cto+55°C(32 °Fto 131 °F)

Storage temperature -20°Cto +80°C (-4 °F to 176 °F)

Relative humidity 93% @ 40 °C, non-condensing

Power supply range 9..32VDC

Table 3: Kontron K-Box K-BOX A-330 MX6 hardware specifications

Table 3 shows the hardware specifications of the K-Box A-330. The system has a dual-core ARM SoC
with 512 MB of main memory (RAM) [3]. Since the 4GB internal eMMC might not be sufficient to host a
large number of Docker images we have decided to use 32GB Micro SD cards to install the CARAMEL
firmware load. This also allows us to install two images in parallel for the secure firmware update
process we plan to implement for the anti-hacking device.

7.4.2 Software Installation

The default software installation is described in detail in [10].

The software build process is based on the Yocto firmware build system [11]. In order to implement pre-
installed Docker containers and Docker container autostart as well as secure boot and secure firmware
update, we have implemented additional recipes for the CARAMEL project that augment the Kontron
base Yocto firmware build files. These will be described in a later deliverable in WP5.

The CARAMEL firmware image has to be installed to a Micro SD card to support the pre-installed
Docker images (crypto and other containers) as well as the dual-boot setup for the secure and reliable
firmware update process we plan to implement.

Page 40 of 41

CARAMEL (No. 833611) D5.4 April 2021

References

(1]
(2]
3]
[4]
5]
[6]

[7]

(8]

9]

European Commission — Grant Agreement Number 833611 - CARAMEL. 2019.
CARAMEL — D5.1: Hardware Security Module Specifications. 2020.

Kontron: KBox A-330-MX6 datasheet. Kontron, 2020.

CARAMEL — D2.4:; System Specification and Architecture. 2020.

Coral: Update or flash the board. https://coral.ai/docs/dev-board/reflash/

NVidia Jetson Developer Guide.
https://docs.nvidia.com/jetson/I4t/index.html#page/Tegra%20Linux%20Driver%20Package%20De
velopment%20Guide/introduction.html#.

Kontron: KBox A-330-MX6. https://www.kontron.com/products/systems/embedded-box-pc/kbox-a-
series/kbox-a-330-mx6.html.

Kontron: Description of the iMXceet Solo / Dual S Demoboard. https://docs.kontron-
electronics.de/yocto-ktn/build-ktn-rocko/board-imxceet-solo-dual-s/.

IETF: RFC 7030: Enrolment over Secure Transport. https://tools.ietf.org/html/rfc7030. 2013.

[10] Kontron Electronics: Quickstart - Kontron Electronics Docs - NXP i.MX6 (Rocko).

https://docs.kontron-electronics.de/yocto-kin/build-ktn-rocko/quickstart/.

[11] Yocto Project: The Yocto Project. https://www.yoctoproject.org.

Page 41 of 41

https://coral.ai/docs/dev-board/reflash/
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/introduction.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/introduction.html
https://www.kontron.com/products/systems/embedded-box-pc/kbox-a-series/kbox-a-330-mx6.html
https://www.kontron.com/products/systems/embedded-box-pc/kbox-a-series/kbox-a-330-mx6.html
https://docs.kontron-electronics.de/yocto-ktn/build-ktn-rocko/board-imxceet-solo-dual-s/
https://docs.kontron-electronics.de/yocto-ktn/build-ktn-rocko/board-imxceet-solo-dual-s/
https://tools.ietf.org/html/rfc7030.%202013
https://docs.kontron-electronics.de/yocto-ktn/build-ktn-rocko/quickstart/
https://www.yoctoproject.org/

