
CARAMEL (No. 833611) D5.5 June 2021

Page 1 of 39

D5.5

Secure Hardware Platform Specification

Topic SU-ICT-01-2018

Project Title Artificial Intelligence-based Cybersecurity for Connected and
Automated Vehicles

Project Number 833611

Project Acronym CARAMEL

Contractual Delivery Date M21

Actual Delivery Date M21

Contributing WP WP5

Project Start Date 01/10/2019

Project Duration 30 Months

Dissemination Level Public

Editor DT-Sec

Contributors DT-Sec

CARAMEL (No. 833611) D5.5 June 2021

Page 2 of 39

Document History

Version Date Remarks

0.1 11/05/2020 Initial version, filled in all sections with preliminary material

0.1 18/06/2020 All sections filled with planned content, ready for review

0.2 29/06/2020 Review comments integrated, final diagrams added

1.0 30/06/2020 Final editing completed, ready for submission

CARAMEL (No. 833611) D5.5 June 2021

Page 3 of 39

DISCLAIMER OF WARRANTIES

This document has been prepared by CARAMEL project partners as an account of work carried out
within the framework of the contract no 833611.

Neither Project Coordinator, nor any signatory party of CARAMEL Project Consortium Agreement, nor
any person acting on behalf of any of them:

 makes any warranty or representation whatsoever, express or implied,

o with respect to the use of any information, apparatus, method, process, or similar item
disclosed in this document, including merchantability and fitness for a particular
purpose, or

o that such use does not infringe on or interfere with privately owned rights, including any
party's intellectual property, or

 that this document is suitable to any particular user's circumstance; or

 assumes responsibility for any damages or other liability whatsoever (including any
consequential damages, even if Project Coordinator or any representative of a signatory party
of the CARAMEL Project Consortium Agreement, has been advised of the possibility of such
damages) resulting from your selection or use of this document or any information, apparatus,
method, process, or similar item disclosed in this document.

CARAMEL has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 833611. The content of this deliverable does not reflect the
official opinion of the European Union. Responsibility for the information and views expressed in the
deliverable lies entirely with the author(s).

DISCLOSURE STATEMENT

"The following document has been reviewed by the CARAMEL External Security Advisory Board as
well as the Ethics and Data Management Committee of the project. Hereby, it is confirmed that it does
not contain any sensitive security, ethical, or data privacy issues."

CARAMEL (No. 833611) D5.5 June 2021

Page 4 of 39

Table of Contents

List of Figures .. 5

List of Tables ... 6

List of Acronyms .. 7

Executive Summary .. 9

1 Introduction .. 10

1.1 Project Overview ... 10

1.2 Document Scope ... 10

1.3 Document Structure .. 10

2 The CARAMEL Anti-hacking Device ... 12

3 Secure Hardware Platform .. 14

3.1 Anti-hacking Device Overview .. 14

3.2 Coral Dev Board .. 16

3.2.1 Hardware Overview ... 16

3.2.2 Initial Software Installation .. 18

3.2.3 Dual-boot Configuration for Development Purposes .. 19

3.3 NVidia Jetson AGX ... 21

3.3.1 Hardware Description .. 21

3.3.2 Software Installation .. 22

3.4 Kontron K-Box K-BOX A-330 MX6.. 22

3.4.1 Hardware Description .. 22

3.4.2 Software Installation .. 23

4 Layered approach to security .. 24

5 Deterministic Firmware Build Using Yocto... 25

6 Secure Boot ... 27

7 Secure firmware update ... 30

8 Secure Docker containers ... 34

8.1 Introduction to Docker Content Trust (DCT) ... 34

8.2 Harbor Registry Service .. 36

9 Conclusions and Next Steps .. 38

References .. 39

CARAMEL (No. 833611) D5.5 June 2021

Page 5 of 39

List of Figures

Figure 1: The anti-hacking device in the vehicle ... 12
Figure 2: Anti-hacking device security features .. 12
Figure 3: Machine Learning Pipeline .. 14
Figure 4: Anti-hacking Device Software Architecture ... 15
Figure 5: Anti-hacking Device Hardware with TCOS module via I2C ... 16
Figure 6: Conversion of Tensorflow model for use with Edge TPU .. 17
Figure 7: Coral Dev Board in Aluminum Case .. 18
Figure 8: Coral Dev Board DIP switch positions for SD card boot.. 20
Figure 9: NVidia Jetson AGX Embedded Controller ... 21
Figure 10: Kontron K-Box K-BOX A-330 MX6 Embedded Controller ... 22
Figure 11: Layered approach to security .. 24
Figure 12: Overview of the Yocto build system... 25
Figure 13. A typical boot sequence of a TrustZone-enabled processor ... 28
Figure 14: Secure boot for the anti-hacking device .. 29
Figure 15. High-level remote update architecture ... 30
Figure 16. Development model supporting digital signatures ... 32
Figure 17: Anti-hacking device firmware update process ... 33
Figure 18: Signed firmware format .. 33
Figure 19: Docker content trust ... 35
Figure 20: The Harbor registry service ... 36

CARAMEL (No. 833611) D5.5 June 2021

Page 6 of 39

List of Tables

Table 1: Kontron K-Box K-BOX A-330 MX6 hardware specifications .. 23

CARAMEL (No. 833611) D5.5 June 2021

Page 7 of 39

List of Acronyms

AI Artificial intelligence
API Application Programming Interface
CA Certificate authority
CAN Controller area network
CCAM Cryptographic Accelerator and Assurance Module
CPU Central processing unit
D Deliverable
DC Direct Current
DEB Debian Package Format
DCT Docker Content Trust
DIP Dual in-line package
DDR Double Data Rate
eMMC Embedded Multi-media card
eSE Embedded Secure Element
EST Enrolment over secure transport
FS File System
GPIO General Purpose Input/Output
GPU Graphical Processing Unit
HAB High-assurance boot
HDMI High-Definition Multimedia Interface
HSM Hardware security module
HTTP Hypertext transfer protocol
HW Hardware
I2C Inter-Integrated Circuit
ICT Information and communication technologies
ID Identifier
IDS Intrusion Detection System
IF Interface
IP Internet protocol
IPK Itsy Package
IPS Intrusion Prevention System
LPDDR Low power DDR
LTE Long-term evolution
MIMO Multiple Input Multiple Output
ML Machine learning
MMC Multi-media card
MMU Memory management unit
NVMe Non-volatile Memory Express
OEM Original Equipment Manufacturer
OS Operating System
OSS Open source software
OTP One-time Programmable
PC Personal computer
QA Quality Assurance
RAM Random access memory
ROM Read-only memeory
RPM Redhat Package Manager
RSA Rivest, Shamir, & Adleman (public key encryption technology)
SD Secure Digital
SHA Secure Hash Algorithm
SoC System-on-a-chip
SSL Secure Socket Layer
TAR Tape Archive
TCOS Telekom Card Operating System
ToC Table of Contents
TOPS Tera-operations per second
TPU TensorFlow Processing Unit

CARAMEL (No. 833611) D5.5 June 2021

Page 8 of 39

UC Use Case
USB Universal serial bus
V2X Vehicle to X
Wi-Fi Wireless Fidelity
WP Work Package

CARAMEL (No. 833611) D5.5 June 2021

Page 9 of 39

Executive Summary

CARAMEL system components will address a wide range of security-related topics and technologies,
from cyber threat detection (WP3), cyber-attack prevention (WP4), to in-depth defense mechanisms
(WP5). The objective of WP5 is to provide the design, development, and prototype implementation of
the CARAMEL anti-hacking device and in-depth defense solution. It will be based on different machine
learning-based (ML) algorithms to detect and mitigate cyber-threats, while processing and collecting
large volumes of data in future autonomous vehicle scenarios.

In this document we describe in detail the concept of a passive intrusion detection system – the anti-
hacking device – implemented as an electronic control unit with integrated machine learning capability
in the vehicle to detect threats to the connected vehicle in an agile manner.

Since the anti-hacking device (in-car IDS) shall improve the security of the vehicle and not create a new
attack surface on its own the concepts of multi-layered security or defence-in-depth are applied to the
anti-hacking device in an innovative way, integrating an embedded HSM, secure boot, secure firmware
update, along with machine learning-based threat detection capability in a small form factor, low-cost
device.

CARAMEL (No. 833611) D5.5 June 2021

Page 10 of 39

1 Introduction

1.1 Project Overview

The rapidly growing connectivity of modern vehicles opens numerous opportunities for new functions
and attractive business models. At the same time, the potential for cyberattacks on vehicle networks is
increasing. These attacks entail risks, especially with regard to functional safety and potential financial
damage. CARAMEL’s [1] goal is to proactively address modern vehicle cybersecurity challenges by
applying advanced Artificial Intelligence (AI) and ML techniques, and also to continuously seek methods
to mitigate associated safety risks. By adopting well-established methods from the ICT (Information and
communication technologies) sector CARAMEL aims to develop an Anti-hacking IDS/IPS as a
commercial product aimed towards the European automotive cyber security market and to demonstrate
their value through comprehensive attack scenarios.

1.2 Document Scope

CARAMEL system components will address a wide range of security-related topics and technologies,
from cyber threat detection (WP3), cyber-attack prevention (WP4), to in-depth defense mechanisms
(WP5).

The objective of WP5 is to provide the design, development, and prototype implementation of the
CARAMEL anti-hacking device and in-depth defense solution. It will be based on different machine
learning-based algorithms to detect and mitigate cyber-threats, while processing and collecting large
volumes of data in future autonomous vehicle scenarios. All these processes will be executed with
state-of-art algorithms developed in WPs 3 and 4 of the CARAMEL project – updated in real time
depending on the situational awareness about the underlying system at any time.

In this document we describe in detail the concept of a passive intrusion detection system – the anti-
hacking device – implemented as an electronic control unit with integrated machine learning capability
in the vehicle to detect threats the connected vehicle in an agile manner.

Since the anti-hacking device (in-car IDS) shall improve the security of the vehicle and not create a new
attack surface on its own the concepts of multi-layered security or defence-in-depth are applied to the
anti-hacking device in an innovative way, integrating an embedded HSM [2][9], secure boot, secure
firmware update, along with machine learning-based threat detection capability in a small form factor,
low-cost device.

1.3 Document Structure

This document is structured as follows:

Chapter 2 recaps the security features of the anti-hacking device and relates these efforts to other tasks
in WP5.

Chapter 3 introduces the three different secure hardware platforms that have been chosen as the base
for the anti-hacking device implementations done in the CARAMEL project. The three different hardware
platforms address different security, cost, performance, and form factor requirements.

Chapter 4 introduces the concept of layered security or defense-in-depth on a high level. These
concepts are the broken down and further detailed in the following chapters.

Chapter 5 looks at how the software load for two of the hardware platforms is created to enhance
security and availability.

Chapter 6 gives details of the secure boot mechanism, while chapter 7 focuses on the secure firmware
update process.

In chapter 8 a very important aspect of the anti-hacking device software architecture is covered: Docker
container technology provides the agility required by an intrusion detection system needed for a swift

CARAMEL (No. 833611) D5.5 June 2021

Page 11 of 39

reaction to new threats and attack surfaces. This chapter describes how Docker containers can be
deployed quickly and securely using Docker Content Trust technology.

Finally, we summarize the findings in this document and give an outlook for the final deliverable D5.6
in WP5.

CARAMEL (No. 833611) D5.5 June 2021

Page 12 of 39

2 The CARAMEL Anti-hacking Device

Figure 1: The anti-hacking device in the vehicle

The CARAMEL anti-hacking device is designed as a passive intrusion detection device that is integrated
as an additional controller into the vehicle (see Figure 1). The anti-hacking device passively listens to
the car’s internal busses and systems, processes and aggregates raw data from sensors and
communication controllers and uses machine learning (ML) and other heuristics to detect possible
attacks against the vehicle’s systems.

It then actively creates attack reports (events) and sends them to the CARAMEL backend. Details of
the integration of the anti-hacking device into the different CARAMEL scenarios are described in the
CARAMEL specification [4].

The anti-hacking device needs to be updated very frequently to run updated attack detection algorithms
to counter newly discovered attack vectors. This requires frequent updates of the anti-hacking device
firmware and application load. From a vehicle safety perspective any corruption of the anti-hacking
device by malicious actors must be avoided at all costs.

Figure 2: Anti-hacking device security features

To this end multiple security features will be implemented in the project to harden the anti-hacking
software against any kind of attacks (see Figure 2):

 Secure Boot: The anti-hacking device hardware has fuses (write-once programmable storage
locations) that contain the public keys of acceptable boot loader signatures. The anti-hacking
device only loads a correctly signed bootloader. The bootloader in turn verifies the signature of

Engine
Managemen

t

Emission
Aftertreatment

Body Builder

Level & Roll
Control

Tire Pressure
Monitoring

Battery &
Energy

Management

Door
Modules

HVAC

Cabin I/Os

HMI CU

Cluster

Secondary
Display

VDR/DTCO*

Tolling-OBU

Powertrain Domain
Safety relevant

Chassis & Safety Domain
Safety relevant

Cabin & Comfort Domain Infotainment &
Telematics Domain

Im a g e Sou rce: C o n tin en ta l

Gateway &
Computation

P
o

w
er

tr
a

in
 S

u
b

n
et

 (
H

ig
h

 S
p

ee
d

 C
A

N
)

C
h

a
ss

is
 S

u
b

n
et

 (H
ig

h
 S

p
ee

d
 C

A
N

)

Redundant CAN

C
a

b
in

 S
u

b
n

et
 (

Lo
w

 S
p

ee
d

 C
A

N
)

In
fo

ta
in

m
en

t
Su

b
n

et

Cabin
Master Control

Unit

Cabin
Master Control

Unit

Cabin
Master Control

Unit

Infotainment
Master Control

Unit
Backend
/Internet

On-board IDS

IVN traffic In-car
event display

Backend IDS
& event data

analytics

V2X channel

Detection
rules/algorithm

update

Vehicle
log data

In-vehicle Network

Anti-hacking Device
Multi-level security

implemented in CARAMEL

Intrusion detection edge device

Secure Boot:
Prevents

Physical tampering

Secure Firmware
Update:

Allows frequent,

verified updates

Integrated TCOS
Module:

Multi-purpose

Hardware
Security anchor

Docker container
Technology:

Secure application

isolation

Anti-hacking Device
Multi-level security

implemented in CARAMEL

Intrusion detection edge device

CARAMEL (No. 833611) D5.5 June 2021

Page 13 of 39

the Linux Kernel and only continues to load a verified kernel. These measures counter any
physical tampering attacks on the boot medium.

 Secure Firmware Update: The anti-hacking device allows updating the firmware of the Internet
(eg. over the vehicle’s communication controller via LTE/5G). The anti-hacking device only
accepts firmware update files that are properly signed by the anti-hacking device vendor. This
protects the device against the installation of manipulated firmware images. In addition to this
signature check the anti-hacking device implements also Secure Boot and would reboot to the
last known safe state even if the secure firmware signature check were circumvented –
effectively implementing multi-level security here.

 Docker technology: The anti-hacking device encapsulates the actual detection algorithms and
also some system services into Docker containers. This has several advantages: It allows
update of detection algorithms without a full firmware update. Additionally, the detection
algorithms are separated by the protections offered by the Docker runtime against any mutual
interference. As a last security measure, the anti-hacking device only accepts signed Docker
images from pre-defined trusted sources, effectively also implementing multi-level security for
Docker implementation on the anti-hacking device.

 Integrated TCOS (HSM) module: The anti-hacking device contains a hardware secure module
(HSM) in the form of a Telekom Card Operating System (TCOS) security chip. Like a smartcard,
the TCOS module offers secure storage of private key materials and certificates and the ability
to run sensitive cryptographic operations securely on chip. The TCOS module offer these
functionalities to Dockerized applications via a high-level security service also implemented as
a Docker container.

This document describes in detail the secure boot and secure firmware updates process as well as the
secure Docker technology approach chosen for the anti-hacking device. The integration of the TCOS
HSM (Telekom Card Operating System Hardware Secure Module) have been described in the
deliverables D5.1 “Hardware Security Module Specifications” [2] and D5.4 “CARAMEL IDS/IPS Security
Module” [9].

CARAMEL (No. 833611) D5.5 June 2021

Page 14 of 39

3 Secure Hardware Platform

Three different anti-hacking device hardware platforms have been chosen for the project. The rationale
behind supporting three and not only one platform is that:

 Project partners have expressed the need to support different performance points for the
machine learning algorithms developed in WPs 3 and 4. Some of the partners use only heuristic
methods to detect threats that require no machine learning capability. Therefore, we needed to
introduce different hardware platforms with different kinds of computational resource profiles.

 For the exploitation phase we anticipate that different OEMs have different requirements when
it comes to prices and required security level. Therefore, we have selected hardware platforms
that are able to meet different price and security targets.

 Finally, we strive to develop a flexible solution that is applicable for a wide range of application
and integration scenarios. In order to prove the viability of the anti-hacking solution in such a
wider context we have chosen to support three different hardware platforms for the CARAMEL
project.

3.1 Anti-hacking Device Overview

The CARAMEL anti-hacking solution is an important part of the project innovation. In this section, we
have a deeper look on the general architecture and functionalities of it.

Figure 3: Machine Learning Pipeline

The anti-hacking device is a physical controller that is integrated into the car and acts as an attack
detection device. In the Autonomous Mobility scenario its task is to run pre-trained ML models that work
on the sensor data to detect anomalies that might point to malicious attacks. Additionally, the anti-
hacking solution might be used for different functions in the context of the CARAMEL project, i.e. if
needed it can ensure security for an embedded application platform. In this case, the software layer of
the solution might be employed only. Further details about this approach will be presented in the rest
of this document.

The anti-hacking device is connected to the busses in the car carrying the sensor data. It passively
monitors the bus traffic (e.g. CAN bus frames) and extracts the raw sensor data.

CARAMEL (No. 833611) D5.5 June 2021

Page 15 of 39

Figure 3 shows the ML pipeline where raw data, e.g. from the CAN bus, is pre-filtered and aggregated
to make it suitable for the following machine learning stage to detect threats and attacks. Any security-
relevant events are then forwarded to the visualization and mitigation components in the car.

The ML knowledge base (model) is pre-loaded into the anti-hacking device. The model will have been
created offline on a more powerful system based on simulated and real-world training data.

Figure 4: Anti-hacking Device Software Architecture

Figure 4 shows an overview of the software and hardware architecture of the anti-hacking device. From
bottom-up the following components make up the anti-hacking devices:

 Hardware (HW) Interfaces: The anti-hacking device will be connected to the in-car systems via
appropriate interfaces used in the automotive industry such as the CAN bus or Automotive
Ethernet connections. For integration into development and simulation frameworks standard
Ethernet will also be supported.

 The anti-hacking device will also support machine learning (ML) hardware. One variant of the
anti-hacking device is based on the Coral Dev Board where the TensorFlow Lite Processing
Unit (TPU) is the hardware element to support ML. The NVidia-based anti-hacking device has
ML support in the SoC. For a development and simulation configuration the Coral USB
Accelerator is also supported. This USB accelerator can also be used to add ML capability to
the Kontron K-Box.

 HSM (hardware security module): To provide security-related functions of the anti-hacking
device the hardware will integrate a Secure Element or HSM in the form of a TCOS (Telekom
Card Operating System) embedded smartcard module that supports secure storage of private
keys and different cryptographic operations.

 The anti-hacking device itself is based on an NXP Freescale i.MX processor that supports
security functions such as hardware-assured boot.

 On this security hardware runs a Yocto-based firmware layer (a Linux embedded meta
distribution), or Ubuntu 18.04 in the NVidia case.

 On top of this firmware substrate Docker-based application-specific containers can be loaded.
Out-of-the box there will be crypto containers supporting the security functions of the anti-
hacking device. ML workloads will be also be implemented as containers that have access to
the underlying ML hardware as well as the crypto functions exported by the crypto container.

CARAMEL (No. 833611) D5.5 June 2021

Page 16 of 39

 The anti-hacking device could also act as a secure run-time environment for other functions as
needed by the different use cases.

3.2 Coral Dev Board

3.2.1 Hardware Overview

Figure 5: Anti-hacking Device Hardware with TCOS module via I2C

Figure 5 shows a picture of both the final target hardware - the Coral Dev Board1 and the TCOS security
module.

The Coral Dev Board has the following hardware specifications:

 CPU: NXP i.MX 8M SOC (quad Cortex-A53, Cortex-M4F)

 GPU: Integrated GC7000 Lite Graphics.

 Coprocessor: Google Edge TPU.

 RAM: 1GB LPDDR4.

 Flash memory: 8GB eMMC.

 Connectivity: Wi-Fi 2×2 MIMO (802.11b/g/n/ac 2.4/5GHz) Bluetooth 4.1.

 Dimensions: 48 x 40 x 5mm.

The i.MX8 SOC includes advanced security features such as HAB (high-assurance boot) and CCAM
(Cryptographic Accelerator and Assurance Module) that will support the security features of the Anti-
hacking device. The firmware for the i.MX8 SOC will be created using the Yocto environment which is
an industry-standard toolkit to create custom embedded firmware images in a reproducible manner.

1 https://coral.ai/docs/dev-board/get-started/

CARAMEL (No. 833611) D5.5 June 2021

Page 17 of 39

Our build process will support signed bootloaders and Linux kernel in order to prevent tampering with
the anti-hacking device software and configuration.

The Coral Dev Board also has many connectivity options integrated on the board:

 Ethernet port (can be used for IP-based connections in a simulation and test environment, or
to attach Automotive Ethernet adapters if needed)

 GPIO and I2C ports (used for connecting the HSM module, can be used for other purposes as
well)

 USB port (used in the project to connect USB-to-CAN-bus converters)

 Wireless connectivity - Wi-Fi and Bluetooth

The Edge TPU processor integrated into the Coral Dev Board supports the execution of TensorFlow
Lite models, performing 4 trillion operations (tera-operations) per second (TOPS), using 0.5 watts for
each TOPS (2 TOPS per watt). The same Edge TPU is integrated into the USB Accelerator stick, so
similar performance can be expected in the Anti-hacking Device simulation environment on when using
the Kontron K-Box.

Figure 6: Conversion of Tensorflow model for use with Edge TPU

Figure 6 shows how TensorFlow models created by a machine learning process (e.g. running in the
cloud or on project hardware) can be converted for use with either Coral Dev Board or the Coral USB
Accelerator.

The I2C ports of the Coral Dev Board will be used to connect an HSM (hardware security module)
based on the TCOS (Telekom Card Operating System) specification to act as an embedded Secure
Element (eSE) and security anchor for the Anti-hacking device. The HSM is meant to support the
following functions:

 Authentication of the Anti-hacking device for remote provisioning and updates

 Provide support for other CARAMEL use cases that need HSM functionality

 Authentication of the anti-hacking device against central systems such as Automotive SOC
(Security Operations Centre) for event reporting and alerting

CARAMEL (No. 833611) D5.5 June 2021

Page 18 of 39

Figure 7: Coral Dev Board in Aluminum Case

Figure 7 shows the final integration of the Coral Dev with I2C module into an aluminum case. This
configuration is suitable for deployment into vehicles and test environments.

3.2.2 Initial Software Installation

The firmware for the Coral Dev Board is specifically created for the CARAMEL project using a Yocto-
based Linux firmware build process [11]. The details of the build process will be described in D5.6. The
firmware is provided for installation on a 32 GB Micro SD card inserted in the Coral Dev Board.

First, install the official Mendel OS on the internal eMMC as described in [5].

The latest version of the Yocto-based firmware for the SD card built for the CARAMEL project is
available via this link:

https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/core-image-base-coral-dev.wic.gz

The following instructions assume that you use the “Dual-boot configuration for development purposes”
described in section 3.2.3 and execute all the commands when booted into Mendel OS. If you use any
other operating system (such as Linux or MacOS) you will have to adapt the commands appropriately.

First boot into Mendel OS and download the current Yocto-based firmware from the link above. Then
execute the following commands to write the firmware to the Micro SD card (32 GB recommended):

zcat core-image-base-coral-dev.wic.gz | sudo dd of=/dev/mmcblk1 bs=4M

Then resize the root partition on the SD card to fill the rest of the available space:

https://caramelx.mine.bz/caramelx-h2020-prv_dcs/coral/core-image-base-coral-dev.wic.gz

CARAMEL (No. 833611) D5.5 June 2021

Page 19 of 39

resize2fs /dev/mmcblk1p2

This is needed to provide enough space for the Docker images on the card.

At the moment docker-compose is not properly set up in the provided firmware image. Please execute
the following commands while connected to the Internet to install the missing dependencies:

wget "https://bootstrap.pypa.io/get-pip.py"

python3 get-pip.py

pip3 install "jsonschema<3,>=2.5.1"

cd /usr/lib/python3.7/site-packages/

rm -rf PyYAML-5.1.2-py3.7.egg-info

pip3 install "PyYAML<4,>=3.10"

pip3 install "requests!=2.11.0,!=2.12.2,!=2.18.0,<2.20,>=2.6.1"

This problem will be corrected in a forthcoming version of the Yocto firmware build.

3.2.3 Dual-boot Configuration for Development Purposes

For development purposes it is recommended to leave the boot switches as is into order to boot into
Mendel OS first. To test the Yocto build you have to boot from the SD card, however. This can be
achieved by interrupting the automatic uboot by pressing a key and issuing the following commands on
the uboot command line (it make take some time until the kernel is loaded and booting, so don’t power
cycle but wait):

setenv bootdev 1

setenv bootcmd "ext2load mmc 1:1 ${loadaddr} boot.scr; source; boota mmc0

boot_a;"

saveenv

boot

Note that you must use the serial console (ie. the Micro USB port on the Coral Dev Board) connected
to a PC to interrupt the boot process and enter the abovementioned commands.

Of course, after the Yocto-based firmware has proven stable, it is possible to permanently switch to SD
card boot by changing the DIP switch positions as follows:

https://bootstrap.pypa.io/get-pip.py

CARAMEL (No. 833611) D5.5 June 2021

Page 20 of 39

Figure 8: Coral Dev Board DIP switch positions for SD card boot

In order to boot from Mendel OS you then need to interrupt the uboot process again and issue these
commands:

setenv bootdev 0

setenv bootcmd "ext2load mmc 0:1 ${loadaddr} boot.scr; source; boota mmc0

boot_a;"

saveenv

boot

CARAMEL (No. 833611) D5.5 June 2021

Page 21 of 39

3.3 NVidia Jetson AGX

3.3.1 Hardware Description

Figure 9: NVidia Jetson AGX Embedded Controller

Figure 9 shows the NVidia Jetson AGX embedded controller. The Jetson AGX is the most performant
member of NVidia’s Jetson range of devices. It features:

 GPU: 512-core Volta GPU with Tensor Cores

 CPU: 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3

 Memory: 32GB 256-Bit LPDDR4x | 137GB/s

 Storage: 32GB eMMC 5.1

 DL Accelerator: (2x) NVDLA Engines

 Vision Accelerator: 7-way VLIW Vision Processor

 Encoder/Decoder: (2x) 4Kp60 | HEVC/(2x) 4Kp60 | 12-Bit Support

 Multiple USB connectors

 GPIO header with I2C

CARAMEL (No. 833611) D5.5 June 2021

Page 22 of 39

We have also integrated a 1 TB NVMe SSD to store large datasets locally on the device.

3.3.2 Software Installation

As of the time of this writing the NVidia provides a Jetson-specific firmware based on Ubuntu 18.04 that
provides a uniform runtime and development platform for all Jetson devices.[6] The NVidia developer
documentation [6] describes the installation processes of the firmware in detail.

Since the anti-hacking device functionality is based on Docker images and the Docker runtime is pre-
installed in the Jetson firmware no further software installation is necessary to run the CARAMEL
software stack on the device.

3.4 Kontron K-Box K-BOX A-330 MX6

3.4.1 Hardware Description

Figure 10: Kontron K-Box K-BOX A-330 MX6 Embedded Controller

CPU NXP i.MX6 Dual Core/ULL Arm Processor

RAM technology
Capacity

DDR3L
512 MByte (MX6-ULL)

Graphics format 1080p – 1920x1080

CARAMEL (No. 833611) D5.5 June 2021

Page 23 of 39

USB ports
Ethernet ports
Serial and other ports

2x USB 2.0
2x Fast Ethernet
1x RS232, 1x RS485 (switchable CAN) 4x Digital Out

Graphics port HDMI

Internal storage
External storage

4GB eMMC
Micro SD slot

OS Yocto

Construction
Cooling
Dimensions (HxWxD)
Weight
Mounting

Stainless steel
Fanless
111 x 25 x76 mm
Approx. 0,26 kg
for mounting on 35mm mounting rail acc. to EN 60715

Operating temperature
Storage temperature
Relative humidity

0 °C to +55 °C (32 °F to 131 °F)
-20 °C to +80 °C (-4 °F to 176 °F)
93% @ 40 °C, non-condensing

Power supply range 9..32 V DC

Table 1: Kontron K-Box K-BOX A-330 MX6 hardware specifications

Table 1 shows the hardware specifications of the K-Box A-330. The system has a dual-core ARM SoC
with 512 MB of main memory (RAM) [3]. Since the 4GB internal eMMC might not be sufficient to host a
large number of Docker images we have decided to use 32GB Micro SD cards to install the CARAMEL
firmware load. This also allows us to install two images in parallel for the secure firmware update
process we plan to implement for the anti-hacking device.

3.4.2 Software Installation

The default software installation is described in detail in [10].

The software build process is based on the Yocto firmware build system [11]. In order to implement pre-
installed Docker containers and Docker container autostart as well as secure boot and secure firmware
update, we have implemented additional recipes for the CARAMEL project that augment the Kontron
base Yocto firmware build files. These will be described in a later deliverable in WP5.

The CARAMEL firmware image has to be installed to a Micro SD card to support the pre-installed
Docker images (crypto and other containers) as well as the dual-boot setup for the secure and reliable
firmware update process we plan to implement.

Our custom Yocto Linux firmware also supports all the features in sections 3.2.2 and 3.2.3 for the Coral
Dev Board, ie. secure boot with signed boot loader and Linux Kernel, dual boot, signed and secure
firmware updates, as well as signed Docker containers.

CARAMEL (No. 833611) D5.5 June 2021

Page 24 of 39

4 Layered approach to security

Figure 11: Layered approach to security

Since the anti-hacking is supposed to be a passive intrusion detection system for the vehicle that should
improve the security of the overall system architecture, it should pose a security risk on its own. To this
end, we have implemented a layered security approach, also known as defense-in-depth, that enforces
secure operation of the anti-hacking device at several levels (see Figure 11).

 Integrated HSM (secure element) – described in deliverables D5.1 [2] and D5.4 [9]

 Secure boot – described in chapter 6

 Secure userland (root FS) – refer to chapter 5 for details

 Secure application containers – see chapter 8

 Secure firmware update – described in chapter 7

This comprehensive security-first approach also poses challenges that will be addressed by the design
and implementation of the solution:

 Performance/resources of embedded anti-hacking device – embedded devices have less
computing power and memory sizes than servers or desktop computers. Security solutions
must take these resource constraints into account.

 Manage different hardware platforms for different purposes – there is no “one size fits all”
solution for scenarios where the anti-hacking device could be deployed in an automotive
context. To this end we have introduced different kinds of anti-hacking devices that target
different performance, price, and capability points.

 Providing the abovementioned layers for all devices – this probably cannot be achieved actually
for all devices, but in fact this is no problem: There will also be different security targets
depending on the OEM’s security requirements and risk model. We will strive to showcase all
the security features described in this document across the range of anti-hacking device
platforms listed in chapter 3.

CARAMEL (No. 833611) D5.5 June 2021

Page 25 of 39

5 Deterministic Firmware Build Using Yocto

Yocto Linux [11] is not a specific Linux distribution, but a build system to create tailored Linux
distributions for specific hardware platforms and specific usage scenarios.

We have chosen Yocto as a platform for the anti-hacking device firmware load due to the following
considerations:

 Low overhead – only packages that are needed for the task at hand are included in the firmware
image

 High security due to deterministic build process – no reliance on binary packages, all packages
are fetched from the original sources, their integrity is checked, and then they are compiled in
our controlled build environment. Additionally: since only a minimal number of packages is
installed, the attack surface for hackers is minimized.

 Good hardware support from vendors for the Coral Dev board and Kontron K-Box versions of
the anti-hacking device (BSP configurations).

 Docker technology support can be added easily.

Figure 12: Overview of the Yocto build system

Figure 12 shows a high-level overview of the Yocto build system. The workflow for the creation of a new
image is as follows:

 Developers specify architecture, policies, patches and configuration details.

 The build system fetches and downloads the source code from the specified location. The build
system supports standard methods such as TAR files or source code repositories systems such
as Git.

 Once source code is downloaded, the build system extracts the sources into a local work area
where patches are applied and common steps for configuring and compiling the software are
run.

CARAMEL (No. 833611) D5.5 June 2021

Page 26 of 39

 The build system then installs the software into a temporary staging area where the binary
package format you select (DEB, RPM, or IPK) is used to roll up the software.

 Different QA and sanity checks run throughout entire build process.

 After the binaries are created, the build system generates a binary package feed that is used
to create the final root file image.

 The build system generates the file system image and a customized Extensible SDK (eSDSK)
for application development in parallel.

For the CARAMEL project we have added a layer to the Yocto build configuration that adds the following
project-specific features:

 Support for signed bootloader and kernel

 Docker support

 Docker image for TCOS HSM integration

 Docker image for secure firmware upload

The details of these configurations will be described in the forthcoming deliverable D5.6 “CARAMEL
Secure Hardware Platform”.

CARAMEL (No. 833611) D5.5 June 2021

Page 27 of 39

6 Secure Boot

ARM systems require the TrustZone IP extension for the ARM SoC in order to implement secure boot.
Since an NXP-based SoC is used for our demonstrator, we use the NXP variant HAB (high-assurance
boot) for the secure boot implementation.

One of the critical points during the lifetime of a secure system is at boot time. Many attackers attempt
to break the software while the device is powered down, performing an attack that, for example,
replaces the software image on the SD card with one that has been tampered with. If a system boots
an image from flash, without first checking that is it authentic, the system is vulnerable.

The principle to apply here is the generation of a chain of trust for all software running on the device,
established from a root of trust that cannot easily be tampered with. This is known as a secure boot
sequence.

A TrustZone-enabled processor starts in the Secure world when it is powered on. This enables any
sensitive security checks to run before the Normal world software has an opportunity to modify any
aspect of the system.

CARAMEL (No. 833611) D5.5 June 2021

Page 28 of 39

Figure 13. A typical boot sequence of a TrustZone-enabled processor

As shown in Figure 13, after power-on most SoC designs will start executing a ROM-based bootloader
which is responsible for initializing critical peripherals such as memory controllers, before switching to
the uBoot bootloader located in external non-volatile storage such as an SD card. The boot sequence
will then progress through the Secure world operating environment initialization stages, before passing
control to the Normal world bootloader. This will progress to starting the Normal world operating system
based on Yocto Linux, at which point the system can be considered running.

A secure boot scheme adds cryptographic checks to each stage of the Secure world boot process. This
process aims to assert the integrity of all of the Secure world software images that are executed,
preventing any unauthorized or maliciously modified software from running.

The most logical cryptographic protocol to apply is one based on a public-key signature algorithm, such
as RSA (Rivest, Shamir and Adleman public key system) in the case of NXP HAB. In these protocols a
trusted vendor uses their Private Key (PrivKey) to generate a signature of the code that they want to
deploy and pushes this to the device alongside the software binary. The device contains the Public Key
(PubKey) of the vendor, which can be used to verify that the binary has not been modified and that it
was provided by the trusted vendor in question.

CARAMEL (No. 833611) D5.5 June 2021

Page 29 of 39

The PubKey does not need to be kept confidential, but it does need to be stored within the device in a
manner which means it cannot be replaced by a PubKey that belongs to an attacker. The NXP SoCs
provide programmable fuses for storage of the PubKey.

Figure 14: Secure boot for the anti-hacking device

The secure boot process for the anti-hacking device implements a chain of trust (see Figure 14).
Starting with an implicitly trusted component, every other component can be authenticated before being
executed. The ownership of the chain can change at each stage - a PubKey belonging to the device
OEM might be used to authenticate the first bootloader, but the Secure world OS binary might include
a secondary PubKey that is used to authenticate the applications that it loads, ie. the Linux kernel.

Unless a design can discount hardware stack attacks the foundations of the secure boot process, known
as the root of trust, must be in the on-SoC ROM. The SoC ROM is the only component in the system
that cannot be trivially modified or replaced by simple reprogramming attacks.

Storage of the PubKey for the root of trust can be problematic; embedding it in the on-SoC ROM implies
that all devices use the same PubKey. This makes them vulnerable to class-break attacks if the PrivKey
is stolen or successfully reverse-engineered. On-SoC One-Time-Programmable (OTP) hardware, such
as poly-silicon fuses, can be used to store unique values in each SoC during device manufacture. This
enables a number of different PubKey values to be stored in a single class of devices, reducing risk of
class break attacks.

The simplest defense against stack attacks is to keep any Secure world resource execution located in
on-SoC memory locations. If the code and data is never exposed outside of the SoC package it
becomes significantly more difficult to snoop or modify data values; a physical attack on the SoC
package is much harder than connecting a logic probe to a logic board track or an IC pin.

The secure boot code is generally responsible for loading code into the on-SoC memory, and it is critical
to correctly order the authentication to avoid introducing a window of opportunity for an attacker.
Assuming the running code and required cryptographic hashes are already in safe on-SoC memory,
the binary or PubKey being verified should be copied to a secure location before being authenticated
using cryptographic methods.

In case of the NXP i.MX SoCs (eg. as used on the Kontron K-Box or Coral Dev Board) the PubKey is
stored in fuses on the board during configuration in our lab. Secure boot is not finally enforced, however,
in order to allow re-use of the boards after the CARAMEL project.

Secure Gateway Hardware

U-boot Linux

Signed Bootloader Signed Kernel

Kernel keyFused bootloader key

Check Check

Signature Signature

CARAMEL (No. 833611) D5.5 June 2021

Page 30 of 39

7 Secure firmware update

Even though we provide with our Secure Docker container approach a flexible way to update the anti-
hacking to newer threat detection mechanisms it might be necessary to do a remote update of the whole
firmware at some time, eg. to patch flaws in the base Yocto Linux OS layer. It is important to consider
that firmware update security is a process – not only a technology. This is case because cryptographic
technology must be properly embedded into a process to be effective. The following topics should be
considered when implementing remote update capabilities into an embedded design:

 Hardware Support: Many designs today already contain some type of flash. It is important to
consider the intricate details when working with reprogrammable flash. Without proper
planning, design, and coordinated hardware and software implementation, performing a remote
update can unfortunately render a product non-functional.

 Operating System Support: When implementing remote updates, from an embedded OS
perspective, what becomes part of an update? Does the new image contain device drivers, just
a new or modified task, or must it include a whole new OS, boot code etc. Since we are using
Yocto Linux for the K-Box and the Coral Dev Board, we will opt to update the whole Linux
system including applications and Docker support.

 Operational considerations. Embedded systems are found in many diverse environments. If
enabling remote updates, operational considerations can often be a high priority. Typically,
reprogramming in-circuit flash requires more power than standard operation. A wireless sensor
network that harvests energy from the environment will likely have different operational
considerations or operation power budget than an enterprise network switch or router or an
embedded device in a vehicle.

Figure 15 illustrates a generic high-level architecture for implementing secure remote firmware updates.

Figure 15. High-level remote update architecture

There are three main elements that comprise the remote update architecture:

 Embedded device: this is the unit to receive the update, in our case the anti-hacking device.

 Communication path: The embedded device must have a method for receiving an update. This
is dependent on the overall design. In some cases, this is an Ethernet connection, while in
others it could be a backplane or a combination of a USB memory stick and sneaker-net to
deliver the update.

 Firmware repository: this entity maintains a firmware update library for all devices, versions,
configurations, etc.

The following summarizes a set of generic requirements for implementing secure remote firmware
updates:

 Standards: the end solution should leverage available communication and security standards.

 Authentication: A downloaded image should come from trusted sources.

 Validation: Validate that a downloaded image is complete.

 Versatile: The end solution must support a wide range of deployed network topologies.

 Scalable: The end solution must be able to support potentially hundreds or thousands of

CARAMEL (No. 833611) D5.5 June 2021

Page 31 of 39

devices, versions, product lines, etc. all requesting upgrades at one time.

 If the embedded device fails to authenticate or validate a downloaded image, an appropriate
error is set, and overall operation is not affected.

 Only original software must be accepted by the embedded system – specifically software must
not be successfully downloaded to the embedded system that alters its defined behavior.

 Only authenticated parties may alter data (i.e., parameters) stored in the embedded system.

Figure 16 shows the iterative development model for secure firmware updates.

CARAMEL (No. 833611) D5.5 June 2021

Page 32 of 39

Figure 16. Development model supporting digital signatures

CARAMEL (No. 833611) D5.5 June 2021

Page 33 of 39

First, a digital signature is calculated for the new firmware load as shown in the Figure 16. The private
key sk must be kept secure and is only known to the Trusted Authority. In many cases this is a secure
machine that is not connected to a network. Additionally, there are typically well-established procedures
for access and use of the secure machine to generate a digital signature.

The iterative process of developing and debugging the Yocto-based software eventually yields a final
release candidate that is a binary image. As part of established security processes in place, the binary
image is turned over to a Trusted Authority to create a unique digital signature based on the secure
private key sk. The digital signature is then appended to the binary image. The firmware repository now
stores the production image with the digital signature, typically in some form of database. Likewise, the
Trusted authority public key is installed in the embedded device during manufacturing or stored within
the program code.

Figure 17: Anti-hacking device firmware update process

Figure 17 shows how the anti-hacking firmware update process works in detail:

1. The anti-hacking device boots from image 1 on the boot medium
2. The firmware update process is initiated via a browser interface
3. The new, signed firmware file is downloaded to the anti-hacking device
4. The firmware signature is checked. Only if the signature is valid the update process proceeds

to the next step.
5. The firmware image is unpacked and written to the partition for image 2 on the boot medium.
6. A boot loader flag is set so that on next boot the boot loader script tries to boot from image 2.
7. If all is well, the device boots now into boot image 2.
8. If the boot of image 2 fails, the device reboots.
9. The boot loader checks the flags and boots again to image 1 in this case.

This process ensures that a bad flash cannot negatively impact the operation of the anti-hacking device,
increasing its availability.

Figure 18 shows the format of the signed firmware files:

 SHA256 signed digest of the firmware file, followed by a

 ROOT image file containing the root file system of the new firmware that can be directly written
to a partition

Figure 18: Signed firmware format

Secure Gateway

Firmware

signature

check

Update image 2,

reboot to new

image 2

Firmware

update file

Boot Disc

Bootloader

Image 1

Image 2

Boot Image 1

Update

Image 2

Browser-based

Firmware

Update

CARAMEL (No. 833611) D5.5 June 2021

Page 34 of 39

8 Secure Docker containers

One of the requirements for the anti-hacking device is the ability to quickly deploy or update new attack
or intrusion detection algorithms in order to mitigate new kind of attacks quickly and in an agile manner.
To this end, we specified the use of Docker container technology for the provisioning of the actual threat
detection mechanisms to the anti-hacking device.

Such a quick update mechanism can pose a potential security threat, however, since the isolation
offered by Docker technology could be circumvented by bad actors (eg. by exploiting implementation
flaws or design problems). Therefore, it is of utmost importance that only secure Docker images from
trusted sources are accepted by the Docker installation on the anti-hacking device.

The following sections detail our implementation choices to offer a Docker provisioning platform that is
both secure and scalable.

8.1 Introduction to Docker Content Trust (DCT)

Docker Content Trust (DCT) is an industry standard technology pioneered by Docker Inc. (see [12] for
an in-depth description). The basic idea behind DCT is that specific tags added to Docker images are
signed using a local key on the development machine. The images together with their signed tags can
then be pushed to a DCT-enabled Docker registry service (eg. the Harbor registry service described in
section 8.2). DCT allows publishers of images to use digital signatures, effectively allowing users pulling
their images to verify:

 That the content of the image has not been tampered with.

 The identity of the publisher.

Because DCT is based on public-key cryptography, anyone can create a free public/private keypair and
start pushing signed images. Publishers need to sign every single individual image before being
uploaded and signatures refer to specific tags of their images

On the consumer side (user of signed Docker images) the images with their tags are downloaded and
can be verified using appropriate Docker commands or, alternatively, the Docker installation on the
consumer side (in our case the anti-hacking device) can be configured to only accept signed images.

CARAMEL (No. 833611) D5.5 June 2021

Page 35 of 39

Figure 19: Docker content trust

CARAMEL (No. 833611) D5.5 June 2021

Page 36 of 39

Figure 19 shows a sample configuration of a DCT deployment suitable for use in the CARAMEL project:
Persons or organizations (partners in the project) hold their local signing keys (shown as red lock
symbols). Some of the tags that are meant for deployment to the anti-hacking device are signed (with
the green wave symbol attached).

It is important to note that for development purposes the whole system can be used without any
restrictions or changes to the familiar Docker workflow: Only when security needs to be enabled the
developer has to generate a signing key und use specific commands to sign tags to be deployed
securely on the anti-hacking device.

The anti-hacking device itself can be configured to only accept signed Docker images from well-known
sources. Since this configuration can be done via an environment variable, it can easily be switched off
for development and test purposes by the CARAMEL partners.

The actual details of the necessary commands to enable DCT on MacOS, Linux, and Windows clients
will be published on the project web site and also available in the forthcoming deliverable D5.6
“CARAMEL Secure Hardware Platform”.

8.2 Harbor Registry Service

The Registry and Notary software offered by Docker Inc. are the reference implementation of the Docker
Content Trust technology. These implementations do not allow fine-grained access control and are only
configurable via Docker environment variables and configuration files.

Another, fully compliant implementation of the DCT and registry specifications is the Harbor registry
service developed by the project with the same name. [13] The Harbor registry offers the following
advantages over the simple reference implementations by Docker Inc.:

 User and group management

 Different repositories with adjustable security policies

 Fine-grained role-based access control to these repositories

 Full support of Docker content trust

 Full implementation of Docker Registry specification

 Kubernetes support for scalable agile Docker deployments

Figure 20: The Harbor registry service

Figure 20 shows the planned Harbor deployment in our lab:

 In the user authentication and authorization section (UAA) we plan to configure all partners that
need access to the repository.

CARAMEL (No. 833611) D5.5 June 2021

Page 37 of 39

 There will be a main CARAMEL harbor project as well as some test projects to which the
partner’s development teams will have read/write access.

 The Notary server implements the DCT processes on the registry side.

 On the right of the diagram, you can see the clients (anti-hacking devices) that pull the signed
images from the registry server.

CARAMEL (No. 833611) D5.5 June 2021

Page 38 of 39

9 Conclusions and Next Steps

In this document we have described in detail the concept of a passive intrusion detection system – the
anti-hacking device – implemented as an electronic control unit with integrated machine learning
capability in the vehicle to detect threats the connected vehicle in an agile manner.

Since the anti-hacking device (in-car IDS) shall improve the security of the vehicle and not create a new
attack surface on its own the concepts of multi-layered security or defence-in-depth are applied to the
anti-hacking device in an innovative way, integrating an embedded HSM, secure boot, secure firmware
update, along with machine learning-based threat detection capability in a small form factor, low-cost
device.

To this end, we have introduced the security features of the anti-hacking device and relates these efforts
to other tasks in WP5.

We have also specified the three different secure hardware platforms that have been chosen as the
base for the anti-hacking device implementations done in the CARAMEL project. The three different
hardware platforms address different security, cost, performance, and form factor requirements.

Taking the high-level concept of layered security or defense-in-depth as a starting point we have
specified how the software load for two of the hardware platforms is created in order to enhance security
and availability. Then we have given details of the secure boot mechanism and the secure firmware
update process.

Finally we have covered an important aspect of the anti-hacking device software architecture: Docker
container technology provides the agility required by an intrusion detection system needed for a swift
reaction to new threats and attack surfaces. We have described how Docker containers can be
deployed quickly and securely using Docker Content Trust technology.

As a next step we will refine the already existing implementations of these concepts on all three secure
hardware platforms and make them available for CARAMEL project partners as part of the work in WP6.
Additionally, demonstrations will be prepared in order showcase the different security technologies
mentioned in this document. This effort will be documented in the upcoming deliverable D5.6
“CARAMEL Secure Hardware Platform” of WP5.

CARAMEL (No. 833611) D5.5 June 2021

Page 39 of 39

References

[1] European Commission – Grant Agreement Number 833611 - CARAMEL. 2019.

[2] CARAMEL – D5.1: Hardware Security Module Specifications. 2020.

[3] Kontron: KBox A-330-MX6 datasheet. Kontron, 2020.

[4] CARAMEL – D2.4: System Specification and Architecture. 2020.

[5] Coral: Update or flash the board. https://coral.ai/docs/dev-board/reflash/

[6] NVidia Jetson Developer Guide.
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20De
velopment%20Guide/introduction.html#.

[7] Kontron: KBox A-330-MX6. https://www.kontron.com/products/systems/embedded-box-pc/kbox-a-
series/kbox-a-330-mx6.html.

[8] Kontron: Description of the iMXceet Solo / Dual S Demoboard. https://docs.kontron-
electronics.de/yocto-ktn/build-ktn-rocko/board-imxceet-solo-dual-s/.

[9] CARAMEL – D5.4: CARAMEL IDS/IPS Security Module. 2021.

[10] Kontron Electronics: Quickstart - Kontron Electronics Docs - NXP i.MX6 (Rocko).
https://docs.kontron-electronics.de/yocto-ktn/build-ktn-rocko/quickstart/.

[11] Yocto Project: The Yocto Project. https://www.yoctoproject.org.

[12] Docker: Content trust in Docker. https://docs.docker.com/engine/security/trust/.

[13] Harbor: Harbor. https://goharbor.io.

https://coral.ai/docs/dev-board/reflash/
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/introduction.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/introduction.html
https://www.kontron.com/products/systems/embedded-box-pc/kbox-a-series/kbox-a-330-mx6.html
https://www.kontron.com/products/systems/embedded-box-pc/kbox-a-series/kbox-a-330-mx6.html
https://docs.kontron-electronics.de/yocto-ktn/build-ktn-rocko/board-imxceet-solo-dual-s/
https://docs.kontron-electronics.de/yocto-ktn/build-ktn-rocko/board-imxceet-solo-dual-s/
https://docs.kontron-electronics.de/yocto-ktn/build-ktn-rocko/quickstart/
https://www.yoctoproject.org/
https://docs.docker.com/engine/security/trust/
https://goharbor.io/

